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A B S T R A C T

Recent literature has shown that volatile organic compound (VOC) emission inventories for urban regions may
be substantially underestimated. In particular, non-transportation sources including volatile chemical products
(VCP) are increasing in relative importance due to both the current and historical focus on controlling trans-
portation emissions. These findings have major implications for photo-chemical air quality modeling used to
determine appropriate and effective regulatory controls to meet limits for primary and secondary pollutants.
Using a regional air quality model, we quantify the changes in ozone and fine particulate matter (PM2.5) si-
mulated for updated VOC emissions reported in the recent literature relative to a baseline inventory for
California. Results show that simulated maximum 8-hr ozone concentrations could increase by 17.4 ppb in
summer and by 15.6 ppb in winter, and the 24-hr maximum PM2.5 could increase by 7.8 μg/m3 in winter.
Impacts reflect differences in the spatial location of VCP source emissions relative to those for transportation.
However, compared to measurement data, model performance is not substantially improved by the adjustment
of VOC emissions of current sources. In brief, augmented VOC emission inventories impact simulated con-
centrations of pollutants, but may not improve the performance of models used for the design of emission control
policy without more refined representation of missing VCPs sources in the inventory.

1. Introduction

Volatile organic compounds (VOC) are associated with atmospheric
processes including the abundance and distribution of trace gases and
secondary organic aerosols (SOA) which directly impact regional air

quality burdens (Seinfeld and Pandis, 2016). In a recent study, McDo-
nald and colleagues concluded that (1) VOC emissions from the use of
volatile chemical products (VCP) in urban regions are increasing in
relative contribution to overall emission budgets, and (2) current
emission inventories for urban regions in California substantially
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underestimate VCP, and VOC emissions overall (McDonald et al.,
2018). Such underestimation can be attributed to various factors in-
cluding a lack of atmospheric measurement studies of oxygenated VOCs
common in household products. Additionally, available ambient VOC
measurement studies typically focus on compounds present in fossil
fuels, while excluding many species found in chemical products.

The findings by McDonald et al. could have important implications
for the design of control strategies to reduce urban air pollution.
Emission inventories compiled by various entities, including the federal
and state agencies responsible for ensuring compliance with the
National Ambient Air Quality Standards (NAAQS), are a crucial input to
air quality models. For regulatory planning purposes, photochemical
models are used to predict compliance with NAAQS in future years by
quantifying atmospheric concentrations in response to prescribed re-
ductions in precursor emissions accounting for atmospheric chemistry
and transport (Foley et al., 2015; Simon et al., 2013). In California, this
approach has increased importance given the challenges in ensuring
compliance with NAAQS for both ozone and fine particulate matter
(PM2.5), which requires comprehensive planning and execution of
emission control regulation (CARB, 2018). Accurate modeling as a
guidance tool for policy development is necessary to ensure clean air in
the future. Therefore, further study of the impacts of VOC under-
estimation within urban inventories on air quality model performance
is warranted. Although, other emission uncertainties such as biogenic
NOx/VOCs emissions would also have notable impact on model per-
formance (Almaraz et al., 2018; Sartelet et al., 2012).

The role of VOC in atmospheric chemical reactions yielding in-
creases in concentrations of ground-level ozone and aerosols is well-
known. Along with nitrogen oxides (NOx) and sunlight, VOC provide
the third reactant necessary for photochemical smog formation in urban
regions characterized by high concentrations of ozone, peroxyacetyl
nitrate, and other species harmful to human health (Finlayson-Pitts,
1997). Additionally, VOC serve as precursors to the formation of SOA
which comprise an important fraction of PM2.5 in urban regions
(Volkamer et al., 2006). VOC initiated PM2.5 form via gas-to-particle
conversion processes including nucleation, condensation and hetero-
geneous and multiphase chemical reactions.

Control strategies for ozone have focused on reducing NOx and VOC
emissions (Bachmann, 2007). Similarly, the control of VOC emissions
has been considered a mechanism to reduce PM concentrations in some
regions of California (Nguyen and Dabdub, 2002). However, the non-
linear complexity of the formation pathways for ozone and PM2.5 makes
it impossible to estimate in a quick calculation the responses to pre-
cursor emission reductions (Atkinson, 2000). Furthermore, the re-
lationship between ozone and emissions of VOC and NOx is of particular
importance to control strategy development (National Research
Council, 1991; Farrell et al., 1999). Some regions in the United States
(US) experience NOx-limited conditions, while others are VOC-limited
with implications for ozone formation (Sillman et al., 1997). Based on
previous observation and modeling studies, metropolitan regions in
California largely experience VOC-limited conditions (Kleinman et al.,
2005; Murphy et al., 2007; Pollack et al., 2012), especially in the South
Coast Air Basin (SoCAB) encompassing the greater Los Angeles area.
However, rural regions including the San Joaquin Valley (SJV) are
more likely to experience NOx-limited conditions in the summer
(Buysse et al., 2018; Pusede and Cohen, 2012). If, as McDonald et al.
suggest, VOC emissions exceed current estimates that serve as the basis
for regulatory planning purposes, regional ozone and PM2.5 burdens in
California may not decline as expected even if emission reduction tar-
gets are met. This is particularly important for the SoCAB since it ex-
periences the poorest ozone air quality in the U.S. The SoCAB is a
complex air basin comprised of a large variety of anthropogenic and
biogenic sources of NOx and VOC (Chinkin et al., 2003; Fujita et al.,
1992; Taha, 1996). Additional regions of California that would benefit
from a greater understanding of this phenomena include the SJV,
Greater Sacramento and the San Francisco Bay Area as these areas

experiences episodes of degraded air quality and contain large popu-
lations. Therefore, further information on the dynamics between pre-
cursor species relating to regional pollutant burdens is needed, given
the new insight on VOC emissions.

This work uses a photochemical air quality model to quantify the
impact of VOC emission inventory underestimations reported by
McDonald et al. on ozone and PM2.5 concentrations in California.
Relative to a baseline emissions inventory, scenarios are developed for
enhanced emissions from both VCP and other source categories, and
resolved for both a summer and winter episode to capture seasonal
effects from meteorology, emission source signatures, etc. We then
compare model performance between the baseline and adjusted VOC
inventories to measurement data to quantify the impact of VOC emis-
sion augmentation. Namely, this work provides insight into the po-
tential implications of VOC inventory underestimation from an air
quality modeling perspective. From the results of the assessment con-
clusions can be drawn which help support the development of effective
control regulations in California. Furthermore, insights can be gained
regarding VCP relative to transportation VOC, including which regions
of California may benefit most from targeted VCP reductions.

2. Materials and methods

2.1. Baseline and adjusted VOC emissions inventory

McDonald et al. (2018) report a consistent underestimation of pet-
rochemical VOC emissions within current emission inventories in the
US. For the SoCAB, VOC emissions are underestimated by a factor of
1.5–2 in current inventory, in particular, VOC emissions from VCP
sources are underestimated by a factor of 3. McDonald et al. define VCP
as including pesticides, coatings, printing inks, adhesives, cleaning
agents, and personal care products that release VOC emissions because
of presence of organic solvents. While a central finding in McDonald
et al. is the relative importance of VCP related VOC emissions, the
authors also note an underestimation of VOC emissions by a factor of
2–3 from upstream sources including petroleum fuel production. This
phenomenon has been noted consistently in the literature including
emissions from large industrial facilities (Li et al., 2017) and petroleum
refineries (Cuclis, 2012; Hoyt and Raun, 2015; Ryerson, 2003).
Therefore, the main objective of this work is to perturb both VCP, and
other VOC source emissions including vehicles and fuel production
activities to determine the impacts of underestimation of VOC emis-
sions both from VCP alone, and from all major sources.

The comparison between the California Air Resources Board (CARB)
2010 inventory and McDonald's results (based on measurement for
2010) is shown in Fig. 1. In the CARB 2010 inventory, over half of VOC
emissions come from transportation, while emissions from consumer
VCP comprise less than 25% of the total. However, the distribution of
emissions between sources differs substantially for the McDonald et al.
results, with VCP contributing more total emissions than the transport
sector. Thus, for the cases here emissions will be adjusted both in total,
and proportionally among sources to be representative of the estimates
of McDonald et al. The underestimation of VCP is implied in MacDonald
et al. to occur due to missing sources in the current inventory. However,
the emission differences are accounted here by scaling up existing
sources in the current inventory without adding new sources. In this
study, four VOC emission scenarios are developed from scaling factors
based on the difference between CARB 2010 and the range of estimates
by McDonald et al., and applied to a more recent inventory (i.e., CARB,
2012) to generate updated VOC emissions:

• Low Case: VOC emissions of VCP, upstream emissions and trans-
portation are scaled to the 300 Gg estimation

• Medium Case: VOC emissions of VCP, upstream emissions and
transportation are scaled to the 350 Gg estimation

• High Case: VOC emissions of VCP, upstream emissions and
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transportation are scaled to the 400 Gg estimation

• VCP Case: Only the VOC emissions of VCP are scaled based on the
350 Gg estimation

Table 1 shows petrochemical VOC emissions by source category for
each Case, as well as the scaling factors used to adjust the baseline
emissions for each sector. First, a comparison of the total emissions
relative to the baseline inventory (190 Gg) for the Low (300 Gg),
Medium (350 Gg), and High (400 Gg) Cases is used to quantify the in-
crease in magnitude. Emissions for each petrochemical source category
are then determined based on the relative distributions shown in
Fig. 1(b). The scaling factors for each Case are determined based on the
ratio between the adjusted VOC emissions of each sector and the Base
Case. For the VCP Only Case, only the VOC emissions from consumer
and industrial VCP are adjusted. Using this method, VOC emissions
from VCP are determined to be underestimated by a factor of 2–3 in the
2012 CARB inventory, which is consistent with the results of McDonald
et al.

Scaling factors from Table 1 are applied to the CARB 2012 inventory
through the Sparse Matrix Operator Kernel Emission (SMOKE, version
4.0) model (U.S. EPA, 2017) to generate anthropogenic emission fields
with updated VOC emissions representative of each Case. One should
note that only VOC emissions are adjusted in this study. All other
emissions remain at baseline levels, including NOx. Furthermore, ad-
ditional VOC emissions are applied to existing sources without chan-
ging temporal and spatial patterns and VOC speciation. Moreover, as a
preliminary study, potential seasonal difference due to product use and
temperature-dependent volatilizations are not considered in the scaling
factor calculation. Speciation is based on the SAPRC-07 chemical me-
chanism (Carter, 2010), and the original speciation profiles from CARB
2012 inventory are used for VCP sources without modification. Next,
the files are merged with biogenic emissions obtained from the Model
of Emissions of Gases and Aerosols from Nature (MEGAN, version 2.1)

(Guenther et al., 2006). Fig. 2 shows emissions of VOC in the Base Case
(Fig. 2(a) and (c)), and the difference between the Base Case and High
Case (Fig. 2 (b) and (d)). As would be expected given the spatial sig-
nature of VCP, important differences are evident in highly populated
urban regions including Los Angeles, the San Francisco Bay region (S.F.
Bay), and greater Sacramento. In these areas, peak differences could
reach 11.68mol/s per grid (4×4 km2) in winter and 11.75mol/s in
summer. In general, increases are similar for both winter and summer,
except for some coastal areas indicated by blue (Fig. 2 (b)) and black
circles (Fig. 2 (d)). Both the increase of VOC emissions within the black
circles and the decrease within the blue circle during the summer epi-
sode are related to the use of non-methyl bromide pesticides. In Santa
Barbara (blue circle), the usage of such pesticides is 3.5 times higher in
January than July, while in Ventura County (small black circle) such
usage is 19 times higher in July than January, and 15 times higher in
the Monterey Bay region (large black circle) (CDPR, 2014).

2.2. Air quality modeling

A chemical transport model is necessary to characterize how
changes in VOC emissions impact concentrations of primary and sec-
ondary pollutant concentrations, including ozone and PM2.5. The
Community Multi-scale Air Quality model (CMAQ) version 5.2 is used
(US EPA Office of Research and Development, 2017). CMAQ is a state-
of-the-art, widely accepted model that is used, for NAAQS attainment
demonstration (Carreras-Sospedra et al., 2016) and a wide range of
research areas involving atmospheric chemistry and processes (Mac
Kinnon et al., 2016; Zhu et al., 2018). The SAPRC-07 chemical me-
chanism (Carter, 2010) is used for gas phase chemistry and the AERO6
module (Appel et al., 2013) is used for aerosol dynamics with the latest
SOA module (Murphy et al., 2017). The modeling domain used is the
same as that for Benosa et al. (2018), that covers all of California at a
4 km×4 km resolution horizontal grid. Simulation data for two

Fig. 1. Contributors to VOC emissions in SOCAB re-
gion. Distribution of (a) petrochemical VOC emis-
sions based on the CARB 2010 inventory, (b) petro-
chemical VOC emissions based on the results of
McDonald et al. (2018) (2010 inventory). The annual
total emissions are shown on the gray box under each
figure, values are obtained from Fig. S2 on the sup-
plementary materials for McDonald et al. (2018).

Table 1
Total VOC emissions and scaling factors of petrochemical sources applied to the 2012 CARB Inventory for each scenario.

Cases Petrochemical Total (Gg/Year) Consumer VCP (Gg/Year) Industrial VCP (Gg/Year) Upstream (Gg/Year) Transportation (Gg/Year)

Base Case 190 43.7 26.6 15.2 104.5
Low Case 300 114 45 42 99
Medium Case 350 133 53 49 116
High Case 400 152 60 56 132
VCP Case 306 133 53 15.2 104.5

Scaling factor Scaling factor Scaling factor Scaling factor Scaling factor

Low Case 1.58 2.61 1.69 2.76 0.95
Medium Case 1.84 3.04 1.99 3.22 1.10
High Case 2.11 3.48 2.26 3.68 1.26
VCP Case 1.61 3.04 1.99 1.00 1.00
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subdomains SoCAB and SJV (same resolution), as shown on Fig. S1, are
selected for a more detailed analysis as they contain the most severe
“designated nonattainment area” for ozone and PM2.5 (U.S. EPA, 2018).
Initial and boundary conditions are generated from the Model for
Ozone and Related Chemical Tracers (Mozart v4.0) (Emmons et al.,
2010). Meteorological inputs are downscaled from (Final) Operational
Global Analysis data (NECP, 2000) using the Advanced Research
Weather Research and Forecasting Model (WRF-ARW, version 3.7),
with the MODIS land use database (Friedl et al., 2010) and the YSU
parametrization (Hong et al., 2006) for the planetary boundary layer.
Simulations are conducted for both a summer (Jul. 8th – Jul. 22nd) and
winter episode (Jan. 1st – Jan. 15th) for each emission scenario, with
the first 4 days ignored as model spin up.

As the enhancement of VCPs emissions could have notable impact

on SOA formation, it is important to consider the implications of the
current SOA module (Murphy et al., 2017) used in CMAQ. Specifically,
a species called Potential Combustion-origin Secondary Organic Aero-
sols (PCSOA) species is used within the SOA module to represent the
potential missing mechanisms of SOA formation from anthropogenic
combustion sources (Murphy et al., 2017). As the nature of this study is
to compensate missing sources of SOA precursors, the inclusion of this
PCSOA species might lead to a double-counting of those sources. Thus,
the predicted PCSOA from the simulation (see Fig. S3) was excluded
from SOA and PM2.5 analyses in this study.

3. Results and discussion

Utilizing the described modeling methods, impacts on ground-level

Fig. 2. Weekly averaged VOC emission rate in the Base Case for winter (a) and summer (c). Difference of VOC emission rate between the High and Base Case for
winter (b) and summer (d). Areas within circles demonstrate the impact of seasonal pesticide applications which represent the only substantial seasonal difference in
emission rates.
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ozone and PM2.5 as a result of augmented VOC emission inventories are
analyzed for all Cases. Each Case is compared to the Base Case to
characterize and quantify differences in pollutant concentrations. Both
the average and maximum differences are analyses to quantify the
general and maximum deviation of the impacts. The absolute difference
of individual cells is considered for the peak difference calculations,
where the maximum negative difference stands for the largest differ-
ence. Section 3.1 presents differences in regional concentrations of
ozone. Section 3.2 discusses results associated with changes in averaged
PM2.5 concentrations. Section 3.3 analyzes model performance by
comparing simulated concentrations with observation data for the Base
case and augmented Cases.

3.1. Ozone impacts

The introduction of additional VCP emissions leads to a substantial
increase in peak ozone concentrations, especially for the High Case as
shown on Fig. 3. While the peak impact is higher in summer (17.4 ppb)
than winter (15.6 ppb), a more wide-spread impact is observed during
the winter (Fig. 3 (a)) relative to summer (Fig. 3 (b)).

In winter, increases in VOC concentrations (Fig. 4 (b)) are promi-
nent over the SoCAB, the SJV extending to Greater Sacramento, and the
S.F. Bay Area. Such increases correspond well with VOC emissions in-
creases shown in Fig. 2 (b). In tandem, increases in ozone (Fig. 4 (a))
and decreases in NOx (Fig. 4 (c)) occur in those regions, indicating the
presence of a modeled VOC-limited environments. Averaged ozone in-
creases exceed 6 ppb in the afternoon hours over Visalia, Fresno and
Bakersfield County, with peak delta maximum 8-h ozone exceeding

Fig. 3. Peak 8 h daily maximum ozone concentration differences between the High and Base Case for (a) winter period, and (c) summer period. Peak 24 h daily
maximum PM2.5 concentration differences between the High and Base Case for (b) winter period, and (d) summer period.
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15 ppb in Tulare and in the SoCAB (Fig. 3 (a)). Due to low biogenic VOC
emissions in the winter, most of the SoCAB and SJV experiences a VOC
limited atmospheric chemical condition, that is further supported by
the increase of HNO3 and increase of PANs (Figure S4 (a) and (b)).
Under high NOx conditions, the increase of VOC concentration pro-
motes the conversion of NO to NO2 with the help of hydroxyl radical

(•OH). Then, NO2 molecules could produce more ozone through pho-

tolysis ( → +NO hυ NO O2 , and O + O2 + M → O3 + M). The increase
of VOC also promotes the formation of HNO3 (Figure S4 (a)) and causes
a decrease in total NOx. It should be noted that the above analysis is
based on the comparison between the High Case and Base Case, which

Fig. 4. Averaged concentration differences of afternoon hours (12PM-8PM) between the High and Base case for winter ozone (a), VOC (b), NOx (c) and summer ozone
(d), VOC (e), NOx (f).

Fig. 5. Relations between daily average Ozone concentration of the base case and average (cross)/peak (dot) differences of each VCPs scenarios for two subdomain
(SoCAB winter (a) and summer (c), SJV winter (b) and summer (d)).
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is representative in this study, as other Cases shows similar geographic
distribution of impacts at lesser scales.

Relative to winter, areas of increased VOC concentrations in
summer are generally reduced. Increases are observed in the SoCAB
(Fig. 4 (e)), where VOC-limited condition persist throughout the year as
indicated by observation data (Pollack et al., 2012). Similarly, de-
creases in NOx concentration are also lesser than winter with the peak
decrease over the SoCAB (Fig. 4 (b)). Correspondingly, substantial in-
creases in ozone are limited to the SoCAB, which exceed 7 ppb in
average for afternoon hours (Fig. 4 (d)) and almost 18 ppb peak dif-
ference in maximum 8-h average for the High Case. In contrast to
winter, increases in the SJV are minimal as additional emissions are
minor compared to enhanced biogenic VOC emissions in summer from
increases in ambient temperatures and more intense periods of sunlight
(Figure S2 (b)). Enhanced biogenic emissions alter the atmospheric
chemical conditions to NOx-limited for ozone formation and, as a result,
increases in VOC emissions no longer yield large increases in ozone.
NOx-limited conditions in the summer period is consistent with ob-
servation data in the SJV (Buysse et al., 2018; Pusede and Cohen,
2012). Thus, the only major area in the study domain that maintains
modeled VOC-limited conditions in summer is the SoCAB, which cor-
respondingly experiences peak increases in ozone.

Fig. 5(a) and (b) present the impact of additional VOC emissions on
spatially averaged daily maximum 8-hr averaged ozone concentrations
over the two subdomains for the winter as a function of base case daily
average concentrations. In general, simulated ozone concentrations
increase in all Cases proportional to VOC emissions, and the days with
larger average differences generally have larger peak difference as well.
For the SoCAB, the largest difference happens on the day with highest
average concentrations (Jan. 7th), where the peak ozone difference
increases from 7 to 15 ppb for the Low and High Cases, respectively
(2–4.5 ppb for average difference). For the SJV, ozone increases of a
similar magnitude are found in Jan. 5th, where the average con-
centration is relatively low. For both subdomains, the averaged max-
imum 8-h concentrations do not exceed the Federal standard of 70 ppb
for the winter period. Fig. 4(c) and (d) show the difference in maximum
8-h ozone for those two subdomains in the summer. First, the maximum
8-h concentrations are much higher compared to the winter period. For
the SoCAB, one third of the simulation period exceeds the Federal
standard. The SJV experiences less total ozone, but it presents three
days when spatially averaged concentrations exceed 70 ppb. The ad-
dition of VOC emissions results in much higher impacts on maximum 8-
h ozone for the SoCAB than the SJV, with the highest increased
17.5 ppb in the SoCAB compared to 3.9 ppb for the SJV. The results
correspond well with the difference observed in Fig. 4 (d), and are due
to the different nature of chemical regime for ozone formation (NOx-
limited in SJV and VOC-limited in SoCAB) as discussed in the previous
paragraph.

In general, the impacts on ozone are more widespread in winter.
However, enhanced VOC emissions result in a greater ozone impact in
summer for metropolitan areas. As a result, when considering with
population density, the implications for health impact assessments
caused by the underestimation of VOC emissions is worth noting.
Additionally, as maximum 8-h ozone concentration are much higher in
the summer, increases make it more difficult to comply with the Federal
and State air quality standards.

3.2. Impact on PM2.5

Fig. 3 presents the peak impacts of adjusted VOC emissions on si-
mulated 24 h averaged daily maximum PM2.5 concentrations in winter
(Fig. 3 (b)) and summer (Fig. 3 (d)), and Fig. 6 presents the time
averaged concentration differences for winter (Fig. 6 (a)) and summer
(Fig. 6 (d)) with results further separated into SOA (b) (e) and ammonia
nitrate (c) (f). In general, the peak PM2.5 concentrations change most
substantially over the SJV (Fig. 3 (b)) (+7.5 μg/m3) in the winter and

over the SoCAB (Fig. 3 (d)) (−0.6 μg/m3) in the summer. As with
ozone, in average, simulated PM2.5 increases substantially over the SJV
and the SoCAB in winter (Fig. 6 (a)). When considering SOA (Fig. 6 (b))
and ammonium nitrate (Fig. 6 (c)), most of the difference results from
changes in concentrations of ammonium nitrate (∼83% for the SoCAB
area and ∼88% for the Central Valley) and is consistent with the de-
creases in NOx discussed previously. The remainder of enhanced PM2.5

occurs from increased SOA formation due to increases in precursor
species in tandem with an adequate supply of OH radicals as an oxi-
dizer. As a result, SOA is enhanced over the SJV and SoCAB. Of interest,
PM2.5 concentrations decrease in regions surrounding the SJV, which is
opposite to what happens within the SJV. Further investigation (see Fig.
S8) shows a correlation between the change in OH concentration with
the change in ammonium nitrate, i.e., OH concentrations decrease in
tandem with ammonium nitrate. Those regions are highly vegetated
and are likely to experience NOx limited conditions (Buysse et al.,
2018), where OH is limited by NO concentration. As more OH is con-
sumed by the increasing VOC, less available OH for nitrate formation
from NO2 (Seinfeld and Pandis, 2016).

In summer, much smaller impact on PM2.5 concentrations are si-
mulated in all areas of the SJV and in the SoCAB relative to the baseline
for both peak (Fig. 3 (d)) and average concentrations (Fig. 6 (d)).
Overall, impacts are opposite in direction and lower in magnitude than
for winter. Considering SOA (Fig. 6 (e)) and ammonium nitrate (Fig. 6
(f)), it is found that the reduction in ammonium nitrate contributes the
majority of PM2.5 reduction, while SOA concentration increase. Al-
though in the opposite direction, most of the changes in ammonium
nitrate and SOA happen throughout SoCAB. As the biogenic VOC is
largely increased in the summer (see Fig. 2), most of the state is likely to
experience a NOx-limited condition. As a result, ammonium nitrate
decreases when limited OH is consumed by VOC oxidation processes
resulting in less available OH for nitrate formation from NO2 (Seinfeld
and Pandis, 2016). The SOA formation is increased as more VOC are
oxidized after the VCPs emissions is enhanced, the same as for the
winter period.

Fig. 7 presents the impact of additional VOC emissions on 24-h
averaged PM2.5 concentrations over the two subdomains (SoCAB and
the SJV) as a function of base case daily average concentration. In
general, the peak difference deviates more than the average difference
for impacts on ozone concentrations (see Fig. 6), and the impact could
occur in opposite directions as the level of VCPs emission enhancement
varies, even within the same day. Furthermore, the magnitude of peak
differences appears less related to the level of average differences, as
days with small average differences may have large peak difference,
particularly in the summer (Fig. 7(c) and (d)). For the winter period,
consistent with Fig. 6 (a), increasing VOC results in an overall increase
in PM2.5 concentrations. For the SoCAB, PM2.5 increases are propor-
tional to the increase in VOC emissions, with the peak delta on Jan. 7th
ranging from 1.8 to 4.5 μg/m3. For the SJV region, peak differences
occurred in Jan. 5th with higher magnitude (3.5–7.8 μg/m3) than
SoCAB. However, decreases are noted in PM2.5 from Jan. 6th to Jan. 9th
in the SJV. It is most likely the wind conditions changed during this
period and resulted in the transport of VOCs emitted from the sur-
rounding forested regions into the SJV, thus changing the chemical
regime from VOC limited to NOx limited, and causing a decrease in
ammonia nitrate concentration (see Fig. S9). Fig. 7(c) and (d) present
the impact for the two subdomains for the summer period. The scale of
impacts is much lower relative to the winter period, and the increase of
VOC emissions leads to an overall decrease in PM2.5 concentration, as
expected from Fig. 6 (d).

3.3. Impact on model performance

To determine the impact of adjusted VCP emissions on model per-
formance, simulation results are compared with observation data ob-
tained from U.S. Environmental Protection Agency's Air Quality System
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(AQS). The AQS network (https://www.epa.gov/aqs) provides reliable
and verified measurements, with hourly recorded concentrations for
PM2.5, PM10 and ozone, for the entirety of California. The definitions of
the statistical parameters used in this study are detailed in the sup-
porting information (SI: Table S1).

Fig. 8 compares ozone (a), (c) and PM2.5 (b), (d) between

observation data and simulated values for each Case (values averaged
across all observation sites). For ozone, in general, model results cap-
ture the diurnal patterns as well as peaks and troughs for both simu-
lation periods, with a consistent, moderate over-estimation during the
winter period. The overestimation of winter ozone is consistent with
previous CMAQ study (Zhu et al., 2018; Figure S2 (a)), where similar

Fig. 6. Time averaged concentration differences between the High and Base case for winter PM2.5 (a), SOA (b), Ammonia Nitrate (c) and summer PM2.5 (d), SOA (e),
Ammonia Nitrate (f).

Fig. 7. Relations between daily average PM2.5 concentration of the base case and average (cross)/peak (dot) differences of each VCPs scenarios for two subdomain
(SoCAB winter (a) and summer (c), SJV winter (b) and summer (d)).
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level of overestimation was found throughout California during winter
period (The low nighttime ozone mixing ratios of 10 ppb in the winter
indicate that ozone is being titrated away by NOx emissions. To describe
this well in the model requires an accurate description of the nighttime
boundary layer, which is rather challenging (Haman et al., 2014)). In
general, increased VCP slightly increases the simulated ozone con-
centrations for both winter and summer. However, for individual sites
the impacts could be substantial, e.g., the peak difference between the
Base and the High Case could reach ∼20 ppb in downtown Los Angles
as shown on Fig. S6, and most of the impacts occur in the afternoon
during peak ozone concentration hours. Consistent with Fig. 3, the
overall impact is more pronounced in the winter than in summer.
Furthermore, the magnitude of impact increases as more VCP emissions
are introduced. Table S2 (a) and (b) presents the model performance
statistics for winter and summer period. In general, the overall model
performance satisfied the recommended performance criteria with
normalized mean bias (NMB)<±15%, normalized mean error
(NME) < 25%) and correlation > 50% (Emery et al., 2017). For both
periods, as ozone concentrations are already overestimated, the en-
hanced VCP emissions leads to higher bias (NMB) and errors (NME),
although increases are very slight (≤ 2%).

Similar to ozone, differences in PM2.5 are larger for winter than
summer, supporting the findings in Fig. 3. The most substantial impact
occurs between Jan. 5 and Jan. 7 with the addition of VCP reducing
underestimation, with a clear distinction between each Case. Unlike
ozone, where enhanced VCP always result in increased concentrations,
impacts on PM2.5 can either be increasing or decreasing concentrations
based on geographical locations as discussed in Section 3.2. For winter,
generally slight increases are simulated, although some periods show
small decreases (e.g., Jan. 9 -Jan. 10). However, for individual sites the
impact could be quite substantial, the peak difference between the Base
and the High Case could reach ∼20 μg/m3 as shown on Fig. S7 for one
site within the Central Valley. For summer, generally decreases in
concentrations are simulated, although with smaller magnitude than
those in winter. Table S3 (a) and (b) shows the detailed model per-
formance statistics for PM2.5. Model performance meets the re-
commended performance criteria for both periods and for all scenarios
with NMB< ± 30%, MFE<50% and correlation>40% (Emery et al.,
2017). For the winter period, the performance error (NME) is slightly
increased with the enhancement of VCP, while bias (NMB) is reduced
along with the improvement of correlation. In general, model

performance is improved as the enhancement of VCP emissions reduced
the underestimation of PM2.5. For the summer, the impact on model
performance is very small, a slight deterioration is observed as the
enhancement of VCP lower the PM2.5 concentration which is already
underestimated in the base case.

In addition, model performance impact is investigated for individual
observation sites. In winter (Fig. 9 (a)) ozone concentrations are over-
estimated for most sites. Model performance is degraded in most re-
gions, except for some locations in Kern and San Diego Counties (Fig. 9
(b)). However, model performance of winter ozone is usually not of
great concern, as ozone concentrations are generally low in the winter.
Model performance for summer ozone is more important as the high
ozone pollution episodes happen under the conditions present in
summer including higher average temperatures. Here, ozone con-
centrations are found to be mostly underestimated in Northern Cali-
fornia and SJV, while overestimated in Southern California for the
summer period (Fig. 9 (e)). As a result, model performance improves in
Northern California and SJV as VCP addition increases ozone, reducing
underestimation. Conversely, degraded performance is observed in
Southern California, particularly in the SoCAB (Fig. 9 (f)). Other
emission uncertainties would also have notable impact for the model
performance of summer ozone. Model performance might be further
improved in Northern California and SJV if the uncertainties of un-
derestimated NOx emissions from agricultural (Almaraz et al., 2018) are
considered. The overestimation of biogenic VOCs of MEGAN in rural
regions (Millet et al., 2008) and underestimation in metropolitan re-
gions (Kota et al., 2015) could also impact the VOC or NOx sensitive
chemical regimes, and thus the model performance. Those uncertainties
should be considered when evaluating the result of this study and will
be investigated in future studies.

For winter PM2.5 (Fig. 9 (d)), model performance is found largely
improved around the south of SJV (around Fresno and Madera) where
largest increase is found (Fig. 3 (b)). However, model performance
deteriorates in most of the remaining observation sites. Notably, the
overestimation in the north of SJV is increased with the enhancement of
VCP emissions. In the summer, PM2.5 concentrations are found to be
largely underestimated throughout the state for the base case (Fig. 9
(g)), except for a handful of sites along the central coast. Thus, the
model performance is further degraded as the adjusted VCP emissions
reduced the PM2.5 concentration in most of the state.

Overall, discrepancies in VOC emission inventories have important

Fig. 8. Time evolution of observation date (averaged over all available sites) and simulation value for each scenario (averaged from corresponding time and location
of each observation) for (a): winter ozone, (c): summer ozone, (b): winter PM2.5, (d): summer PM2.5. (Obs.: ground measurement data; Base: Base case scenario; High:
High Case scenario, Medium: Medium Case scenario; Low: Low Case scenario; Only: VCP case scenario; Win.: Winter; Sum.: Summer).
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impacts but may not affect the performance of models used for the
design of emission control policy.

4. Conclusion

In this work, a baseline VOC emissions inventory based is adjusted
based on recent findings reported by McDonald et al. (2018). The study
investigates the resulting impacts on air quality simulations using a
photochemical model well established on its use for research and reg-
ulatory purposes. Four Cases are developed with a range of estimated
VOC emissions growth over the baseline from VCP sources, that are
underestimated in the baseline inventory according to McDonald et al.
Simulations are conducted for California for both a summer and winter
period for each Case, and compared to a Base Case assuming the ori-
ginal inventory. In general, predicted ozone concentrations increase in
all Cases proportional to VOC emissions. As would be expected, greater
impacts on the maximum 8-h average ozone are found for summer
(17.4 ppb) than for winter (15.6 ppb), with importance for regulatory
modeling as summer ozone levels frequently exceed the NAAQS stan-
dards in California. Impacts on PM2.5 are more variable relative to
ozone. In winter, the most substantial increase in PM2.5 (7.5 μg/m3)
occurs in the SJV, which is associated with the highest baseline con-
centrations. Concentrations also increase in the SoCAB, although with a
lower magnitude (4.5 μg/m3), while decreasing in other California re-
gions in winter. In summer, PM2.5 concentrations generally decrease,
with changes minor in magnitude compared to those from winter
(−0.6 μg/m3). Decreases are expected due to the combined effect of
reductions in nitric acid as more OH is depleted by VOC. Finally, the

impact on model performance is also evaluated using observation data
from the AQS network. Generally, model performance for ozone is
slightly improved by the adjustment of VOC emissions in northern
California and in SJV. For PM2.5, only a select few observation sites are
found to have improved model performance including sites around
Fresno and Madera in the winter where usually has the most polluted
PM2.5 condition. Although the improvement of model performance is
not as expected after the adjustment of VCP emissions in this work, this
does not imply that efforts to improve VOC emission inventories do not
have benefits to regional air quality modeling. As a preliminary study,
there are limitations within this work that could lead to this result, and
those limitations need to be further explored in future work. One reason
for the lack of improvement in model performance could be that the
scaled VOC emissions are only applied to existing sources, which is a
major limitation as McDonald et al. implies that new sources should be
responsible for those missing emissions with independent time and
space distribution. Additionally, there could also be an underestimation
of NOx emission in the base inventory, particularly for the winter period
(Oikonomakis et al., 2018). Furthermore, the uncertainty regarding to
the speciation of the additional VCPs sources can also impact the model
performance, and should also be investigated in future work. Overall,
results show that discrepancies in VOC emission inventories have im-
portant impacts but its affect for the performance of models used for the
design of emission control policy is not straight forward. More effort is
needed to construct accurate VCP related emission inventory to better
evaluate its impact on model performance.

Fig. 9. 1. (a) and (e) are ozone NMB at AQS sites of the Base Case for winter and summer. 2. (c) and (g) are PM2.5 NMB at AQS sites of the Base Case for winter and
summer. 3. (b) and (f) are difference of ozone NME between the Base Case and the High Case for winter and summer (The difference of NME is indicating whether the
High case has larger model errors than the Base case or not, red values indicate deterioration of model performance and blue values indicate an improvement). 4. (d)
and (h) are difference of PM2.5 NME between the Base Case and the High Case for winter and summer. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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