
Health Benefits in California of Strengthening the Fine Particulate
Matter Standards
Shupeng Zhu, Michael Mac Kinnon, Andre Paradise, Donald Dabdub, and G. Scott Samuelsen*

Cite This: Environ. Sci. Technol. 2021, 55, 12223−12232 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: The Clean Air Act requires the United States Environ-
mental Protection Agency to review routinely the National Ambient
Air Quality Standards, including fine particulate matter (PM2.5). A non-
governmental Independent Particulate Matter Review Panel recently
concluded that the current PM2.5 standards do not protect public
health adequately and recommended revising the daily standard from
35 to 25−30 μg/m3 and the annual standard from 12 to 8−10 μg/m3.
To assess the public health implications of adopting the PM2.5
standards proposed by the panel, the health benefits are quantified
from their implementation based on both current (observed) and
future (simulated) air quality data for California. The findings indicate
that strengthening the standards would provide significant public health
benefits valued at $42−$149 billion. Additionally, the stronger
standards are shown to benefit environmental justice via health savings
that are allocated more within environmentally and socioeconomically disadvantaged communities.
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1. INTRODUCTION

Epidemiological studies have confirmed that exposure to fine
particulate matter (PM2.5) has an adverse impact on human
health, resulting in an increased risk of morbidity and
mortality.1−3 Indeed, a scientific consensus confirms a causal
relationship between premature mortality and both long- and
short-term PM2.5 exposure.

4 As a result, the National Ambient
Air Quality Standards (NAAQS) for PM2.5 are set by the
United States Environmental Protection Agency (EPA) to
protect public health under the Clean Air Act. The current
NAAQS, set in 2012, mandates that levels of PM2.5 do not
exceed an annual average of 12 μg/m3 and a 24 h average of 35
μg/m3. According to the Clean Air Act, the NAAQS is subject
to a routine review by the Clean Air Scientific Advisory
Committee (CASAC) to “accurately reflect the latest scientific
knowledge” regarding “the kind and extent of all identifiable
effects on public health”. In 2019, the CASAC concluded that
the available evidence does not reasonably call into question
the adequacy of the current PM2.5 standard and they should be
retained.5 However, a non-governmental Independent Partic-
ulate Matter Review Panel (IPMRP) questioned CASAC’s
conclusions and further determined that the current PM2.5

standards do not protect public health adequately.6 Based on
the scientific evidence and with the acknowledgment that a
continuum of adverse effects decreases as the level of the
standards strengthen, the IPMRP recommends tighter stand-

ards with the PM2.5 concentrations not exceeding an annual
average of 8−10 μg/m3 and a 24 h average of 25−30 μg/m3.
In addition to ensuring that NAAQS protects the public’s

health, assessing that the potential economic impact of
strengthening the standard is essential for policymakers to
evaluate the cost benefits of adjustment. Marshall et al.7

conducted a health benefit assessment for different annual
PM2.5 standards at the national level for the year 2010 and
concluded that lowering the standard to 8−10 μg/m3 would
reduce PM2.5 attributable mortality by 44−69% compared to
25% with the current standard. Also, for locations where
ambient PM2.5 concentrations would meet the annual standard
but not the daily standard, the EPA estimates8 relative risk
reductions of 21 to 27% by changing the standard from 12 to 9
μg/m3. However, the potential health benefits of meeting
potentially revised daily and annual standards have not been
assessed in California for current and future years. Also, how
the attainment of stronger PM2.5 standards can provide
environmental justice (EJ) benefits within socially and
environmentally vulnerable populations representing disadvan-
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taged communities (DAC)9 has not been evaluated previously.
To provide insights into these questions, the potential public
health benefits from implementing the IPMRP proposed PM2.5
standards are evaluated based on both current (observed) and
future (simulated) air quality (AQ) data for California. The
health benefits are then analyzed within an EJ framework by
allocating health benefits at the census tract level based on an
EJ scoring system developed by the California EPA
(CalEnviroScreen 3.010).

2. METHODS

2.1. Scenario Design and the Dynamic Threshold
Capping. The potential health benefits from implementing
the proposed AQ standards were quantified and valued for
California based on both observation and simulated AQ data.
Two baselines were generated for hourly PM2.5 concentrations
at 4 km × 4 km resolution grids (see Figure S1): (1) a 2018
case constructed using satellite and ground-based observational
data (see Data set S1) based on the random forest model
widely used in previous studies to estimate high-resolution full-
coverage PM2.5 concentrations

11,12 and (2) a 2035 case based
on California Air Resources Board emission projections and
simulated using the Community Multiscale Air Quality
(CMAQ) model.13 For both temporal horizons, three
scenarios were assessed for statewide attainment of (1) the
current AQ standards (STDc: 12 μg/m3 annually and 35 μg/
m3 daily), (2) AQ standards (STD1: 10 μg/m3 annually and
30 μg/m3 daily) that are more restrictive than the current, and
(3) even more stringent AQ standards (STD2: 8 μg/m3

annually and 25 μg/m3 daily). Table 1 summarizes the design
and naming of each scenario.
To simulate the minimum PM2.5 concentration reduction

needed to satisfy different regulation standards, a dynamic
threshold capping method was developed to calculate the
adjusted PM2.5 concentration for each scenario. In detail, the
following methodology is applied to each grid cell within the
modeling domain:
Assuming that the annual AQ standard to be satisfied is CA

μg/m3 and the annually averaged PM2.5 concentration from the
baseline is Ca μg/m3. Then, the annual adjustment factor is Fa
= CA/Ca (Fa = 1 if Fa ≥ 1.0).
For each PM2.5 concentration record (hourly) in the

baseline C0, the annual threshold capping is performed: C1 =
C0 ×Fa.
Assuming that the daily AQ standard to be satisfied is CD

μg/m3.
For each day in the baseline, a daily-averaged PM2.5

concentration (Cd μg/m3) is calculated based on the record
after annual adjustment data C1. Then, a daily adjustment
factor can be calculated: Fd = CD/Cd (Fd = 1 if Fd ≥ 1.0).
The daily threshold capping is performed for each hourly

record within that day: C2 = C1 × Fd.

Finally, the minimum PM2.5 concentration reduction is
calculated for health benefit analysis: ΔC = C2 − C0.
Additional justification of the methods used to estimate

minimum PM2.5 reductions is provided in the Supporting
Information. However, it should be noted that the calculated
attainment concentrations for a single year likely yield higher
health benefits than would the use of the standard method for
calculating attainment with NAAQS, which includes data for 3
consecutive years.5

2.2. 2018 PM2.5 Concentrations. Hourly mean PM2.5
concentrations at 4 km spatial resolution over California for
the year 2018 used in this study were estimated using random
forest models that incorporated information from multiple
sources, including ground measurements, satellite remote
sensing, chemical transport model simulations, meteorological
fields, and land-use variables. This method was widely used in
previous studies on estimating high-resolution full-coverage
PM2.5 concentrations (e.g., Hu et al.12 and Xiao et al.11). The
primary daily estimation of PM2.5 concentrations for 2018
using this method has been applied in our previous wildfire
study.14

The satellite-based observation was obtained from the
NASA Earthdata portal (https://search.earthdata.nasa.gov/),
including aerosol optical depth (AOD) data at 1 km spatial
resolution retrieved by the Multi-angle Implementation of
Atmospheric Correction (MAIAC) algorithm.15,16 Ground-
based PM2.5 observations for 2018 were obtained from the U.S.
Environmental Protection Agency’s Air Quality System
(https://www.epa.gov/outdoor-air-quality-data/). Additional
information on PM2.5 distribution was generated based on
PM2.5 simulations from the Modern-Era Retrospective analysis
for Research and Applications, Version 2 (MERRA2) at 0.5° ×
0.625° resolution. Other variables compiled in this study
included pressure, temperature, wind speed, specific humidity,
precipitation, shortwave and longwave fluxes, and evaporation
at ∼13 km spatial resolution from the North American Land
Data Assimilation Systems, elevation at 30 m spatial resolution
from the National Elevation Data set (NED, http://ned.usgs.
gov), forest cover, shrub cover, and cultivated land cover at 30
m spatial resolution from the 2011 National Land Cover
Database (NLCD, http://www.mrlc.gov), road lengths of
major roads, highways, and interstate highways extracted from
ESRI StreetMap USA (Environmental Systems Research
Institute, Inc., Redland, CA), and population data from 2018
LandScan data. All data were integrated into the 1 km MAIAC
grid, and the PM2.5 concentrations were first estimated at 1 km
and then aggregated into a 4 km grid.
Random forest models are initially proposed by Breiman et

al.17 Generally, the random forest algorithm is a decision tree-
based ensemble learning method. It has the advantage of
allowing both continuous and categorical input variables with
high robustness against outliers. It also provides variable
importance rankings and out-of-bag errors for variable

Table 1. Scenario Design

scenarios annual standard (μg/m3) daily standard (μg/m3) baseline BenMAP population set

2018-STDc 12 35 2018-observation 2018-LandScan
2018-STD1 10 30 2018-observation 2018-LandScan
2018-STD2 8 25 2018-observation 2018-LandScan
2035-STDc 12 35 2035-simulation 2035-CDoF
2035-STD1 10 30 2035-simulation 2035-CDoF
2035-STD2 8 25 2035-simulation 2035-CDoF
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selection and model evaluation.18 Two random forest models
were built for this study (i.e., with and without satellite inputs)
and then merged their predictions to obtain full spatial and
temporal coverage of PM2.5 data because AOD has missingness
in a certain time and places. Our models achieved good
performance, with an out-of-bag R2 of 0.94 and a normalized
mean bias of −1.6% (see Figure S2) compared to the AQS
observation data.19

2.3. 2035 PM2.5 Concentrations. Hourly mean PM2.5
concentrations at 4 km spatial resolution over California for
the year 2035 were generated based on simulation results from
a chemical transport model. First, the emissions were projected
to 2035 from the 2012 California Air Resources Board
inventory20 for all sources using the California Air Resources
Board’s CEPAM: 2016 SIPStandard Emission Tool.21

Emissions representative of each case were applied and
resolved in space and time using the Sparse Matrix Operator
Kernel Emissions (SMOKE) modeling system.22 Then, the
Community Multi-scale Air Quality model (CMAQ, v5.2)13

was used to simulate atmospheric chemistry and transport and
fully resolve distributions of hourly ground-level PM2.5
concentrations. CMAQ is a widely accepted model used for
various AQ assessment needs, including regulatory compliance
and atmospheric research associated with tropospheric ozone,
PM, acid deposition, and visibility.23,24 For gas-phase
chemistry, we used the SAPRC-07 chemical mechanism25

and the AERO6 module to provide aerosol dynamics.26 The
model domain was the same as given in the study by Zhu et
al.,27 covering the entire state of California with 4 km × 4 km
horizontal resolution (see Figure S2 for simulation domain).
Boundary conditions were generated via the Model for Ozone
and Related Chemical Tracers (Mozart v4.0).28 We generated
meteorological input data for the modeling period through the
Advanced Research Weather Research and Forecasting Model
(WRF-ARW, 3.7), with the MODIS land-use database.29

Baseline meteorological conditions were obtained from the
(Final) Operational Global Analysis data.30 The boundary
conditions and meteorology were held constant from 2012 to
2035; thus, impacts of transported pollution and climate
change were not considered. We verified model performance
by comparing the 2012 baseline simulation with observational
data from the U.S. EPA Air Quality System for hourly PM2.5
(Supporting Information Figure S3), with acceptable perform-
ance demonstrated through the criteria recommended in ref
31.
2.4. Health Benefits Assessment. It is well understood

that reducing ambient concentrations of outdoor air pollution
attains improvements in health within exposed populations,
including incidences of premature mortality and a wide range
of morbidity endpoints.32−34 Public health benefits attributable
to reductions in PM2.5 from meeting the proposed NAAQS
were assessed using the environmental Benefits Mapping and
Analysis Program-Community Edition (BenMAP-CE) version
1.528. BenMAP-CE was developed by the US Environmental
Protection Agency and is widely used in both research and
regulatory purposes requiring the quantification of the social-
economic health impacts of air pollution.27,35−37

The selection of appropriate concentration−response
functions (CRFs) to numerically quantify the avoided
incidence of mortality across the study population resulting
from reduced PM2.5 concentrations was primarily guided by
the methods used in an analogous study conducted by a pre-
eminent AQ management district in California.38 BenMAP

applies the relationship between the CRF and the quantified
PM2.5 delta and the exposed population to calculate health
impacts, as shown in Supporting Information Figure S4. The
selected CRF was based upon a methodical and comprehensive
review of the epidemiological literature for applicability to
populations within Southern California, including peer review,
date, geography, population characteristics, and study design.39

While our study considers populations in other areas of
California, the lack of regional granularity in the available
epidemiological literature precludes using the CRF with
increased specificity and other studies for California have
used the same CRF.40 The avoided all-cause mortality
incidence associated with reductions in long-term PM2.5
exposure was estimated based on pooling log-linear CRF
estimated by Jerrett et al.41 and Jerrett et al.42 (California
studies), and the kriging and land use regression results are
obtained from Krewski et al.43 (US study). While log-linear
CRFs were selected for consistency with several recent
studies,38,40,44,45 it has been suggested that log−log supralinear
CRFs (i.e., an upward curving slope) may be more appropriate
for estimating mortality incidence at lower PM2.5 concen-
trations.2,46 Therefore, avoided mortality incidences are also
estimated using the supralinear CRF from Burnett et al. (global
study).46 Relative to the results for log-linear CRFs, 46−57%
increases in health benefits are estimated with the increasing
difference between supralinear and linear CRF estimations, as
the standard is reduced, which agrees with the findings of
Marshall et al.7

It should be noted that no concentration threshold is
assumed and health benefits continue to accrue with reduced
exposure at all concentrations of PM2.5, including those below
the regulatory standards. We utilize baseline incidence rates for
mortality from local health data based on public administrative
data wherever possible and then calculate the additional
incidence occurring from increased pollutant exposure. More-
over, one long-term morbidity endpoint (acute bronchitis),47

one short-term mortality endpoint,48 and ten short-term
mortality endpoints (e.g., respiratory symptoms, myocardial
infarctions, ischemic stroke, and so forth)49−62 are also
evaluated. Socioeconomic costs are then estimated using
willingness-to-pay and cost-of-illness valuation functions from
a comprehensive review of the health economic literature for
mortality and morbidity.63,64 The value of statistical life
selected for application with avoided mortality incidents was
$10 million as a midpoint of a range of $4.7−$15.4 million
from Robinson and Hammitt,65 expressed in 2018 dollars and
based on 2018 income levels as recommended for an
analogous work in California.64

To evaluate how strengthening AQ standards could improve
EJ, the health benefits are further analyzed at the census tract
level using the CalEnviroScreen 3.010 EJ screening tool
developed by California’s Office of Environmental Health
Hazard Assessment (OEHHA). CalEnviroScreen identifies
communities burdened by a disparate share of air pollution in
addition to socioeconomic and health challenges that increase
their vulnerability to environmental health effects. CalEnvir-
oScreen ranks each of the state’s 8000 census tracts according
to multiple endpoints associated with pollution, environmental
quality, and socioeconomic and public health conditions.
Organizations ranking within the final 25% (score ≥ 75) are
considered DAC.

2.4.1. Uncertainties. Sensitivity analysis of parameters in the
epidemiological model: in addition to a mean value, BenMAP
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also provides a 95% confidence interval (CI) estimation via a
Monte Carlo analysis around the mean incidence and valuation
estimations, which includes the pooling of uncertainties,
including the avoided incidence of health endpoints quantified
through the CRF, which are derived from epidemiological
literature. Each CRF is associated with an uncertainty
parameter, which is then pooled for all studies within the
final 95% CI. As there are numerous studies providing an input
to the results (e.g., several CRFs are pooled to quantify
avoided incidence of premature mortality), the pooled
distribution can be significant and also reflects the
uncertainties associated with epidemiological studies.
Although the long-term health effects of PM2.5 exposure

dominate the valuation impacts and are presented in the main
text, additional results for short-term exposure effects are also
reported in the Supporting Information (see Tables S1−S4).
No concentration threshold is assumed for the main health
impact assessment modeling, consistent with the current
methods applied by regulatory agencies, including the US
Environmental Protection Agency and South Coast Air Quality
Management District.66 However, health benefits estimated for
lower PM2.5 concentrations may be sensitive to the application
of thresholds. Therefore, additional threshold-based analyses
were conducted for the 2035 STD2 scenario, which has the
lowest average concentrations and would be most impacted by
the assumption of a threshold. The results demonstrate no
impact on the health benefit estimation for a 2.4 μg/m3

threshold (the lowest observed concentration in any of the
41 cohorts reported by Burnett et al.42) and a minimal 0.05%
decrease in mortality by including a 5.8 μg/m3 threshold (the
minimum annual average concentration assigned to subjects in
the American Cancer Society (ACS) CPS-II cohort study by
Krewski et al.2). Even if a threshold of 8 μg/m3 (the annual
standard set for STD2) is assumed, only a −0.7% decrease in
avoided mortality is estimated between the STD2 scenario and
the baseline relative to the results without assuming a
threshold. Figure S5 provides an overview of the framework
used to quantify the avoided incidence of mortality and
morbidity endpoints. As this study focused on the avoided
incidence between the baseline and the attainment scenarios
(i.e., the delta) and a threshold value should always be lower
than the existing standard, the assumption of a threshold does
impact the estimated health impacts of both the baseline and
the attainment scenarios in the singular but has a minor impact
on the delta between them.

2.4.2. Limitations. Comparing baselines generated with
different methods. Although comparisons are made between
the current (2018) and future (2035) scenarios in this study, it
should be noted that the comparison of the health benefits
evaluated under the two baselines is complicated by the
different methodologies utilized. For 2018, the estimated PM2.5
concentrations were largely based on observational data, while
the resolution of PM2.5 concentrations in 2035 was strictly
model-based. Although a sophisticated and state-of-the-art
modeling method is used, which satisfies statistical perform-
ance criteria established by the scientific community, there are
still limitations that prevent perfect modeling of real-world
dynamics associated with pollutant formation and fate.
Therefore, simulated concentrations are not as accurate as
observational data, and this should be considered in the
interpretation of the results. Furthermore, uniformly adjusting
PM2.5 concentrations at each hourly time step does not
necessarily achieve a realistic scenario, particularly when
baseline concentrations are very low. However, it provides a
feasible method for determining the minimum reduction
needed for attainment.
Additionally, a major limitation of this work includes the

lack of wildfire emissions present in the 2035 simulated
baseline concentrations due to the difficulty of predicting
future wildfire characteristics, including occurrence, spatial
distributions, and emissions’ chemical and physical properties.
In contrast, the 2018 baseline concentrations are derived from
observational data, which does include PM2.5 contributed from
several wildfires occurring during that period. Neither of these
assumptions is ideal, as a complete lack of wildfire emissions is
not realistic. On the other hand, PM2.5 from wildfires is not
controllable in the same manner, as other sources comprising
mitigation efforts and including health benefits from reductions
in wildfire PM2.5 in 2018 are not necessarily realistic. However,
the methods for both 2018 and 2035 are limited by these
constraints, and the results should be interpreted with this
caveat.

3. RESULTS AND DISCUSSION

Annually averaged PM2.5 concentrations for both baselines are
shown in Figure 1. Due to the significant emission reduction
from the California State Implementation Plans (SIPs),67

concentrations in 2035 (3.9 μg/m3 on average) are generally
much lower (6.0 μg/m3 on average), including being almost
halved in the San Joaquin Valley (SJV) and San Francisco Bay
Area (SFBA) (see Figure S1 in the Supporting Information for

Figure 1. Baseline annually averaged PM2.5 concentrations for (a) 2018 satellite and ground-based observational reconstruction data and (b) 2035
CMAQ simulation results.
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geographical locations). However, concentrations over the
South Coast Air Basin of California (SoCAB) are only slightly
reduced, which is notable, given the large, dense populations
present. In 2018, high concentrations in northern regions of
California were likely due to wildfire events,14 and high
concentrations in rural southwestern areas represent biogenic
source impacts from the soil and transported pollution from
Mexico.68 Those sources are not represented in the emissions
utilized for the 2035 simulations due to both uncertainties
associated with future projections and the focus on emission
control applicable to anthropogenic sources. Therefore, the
2035 results are likely conservative. A dynamic threshold
capping method is designed to reduce the baseline
concentrations to satisfy the designated daily and annually
AQ standards for each scenario, as detailed in the Methods
section. The annually averaged delta PM2.5 concentration for
each scenario compared to its corresponding baseline is
presented in Figure 2. For the 2018 scenarios, the affected
regions (i.e., the spatial distribution of impact) do not
experience significant changes. However, the total amount of
PM2.5 within those regions is reduced significantly (e.g., STDc:
−15.3%, STD1: −21.7%, STD2: −31.1%). For the 2035
scenarios, both the spatial distribution and quantitative total of
PM2.5 reduced are notably impacted (e.g., STDc: −0.7%,
STD1: −1.7%, STD2: −3.9%).
Results indicate that significant health benefits are attained if

the PM2.5 standards are adjusted to either of the proposed
standards. Here, only avoided mortality incidence associated
with long-term PM2.5 exposure is considered, as it is
responsible for approximately 87% of AQ -driven health
savings, which is consistent with our previous studies.27,69

Meanwhile, the reduced incidence of morbidity health
endpoints is discussed in the Supporting Information. Figure

3a shows that the avoided mortality incidence approximately
doubles if the more restrictive standards are being met and
nearly triples under the most stringent set of standards. For the
most restrictive standards, ∼10,000 incidences of mortality
would be avoided in 2018. In 2035, the avoided mortality is
∼25% lower than for 2018 due to two competing drivers: (1)
expected reductions in baseline PM2.5 concentrations in
response to regulatory efforts (55.8% lower, see Figure 1)
and (2) growth in the total population, which increases both
total exposure and exposure within older age cohorts, which
are more vulnerable to the health effects of exposure. Figure 3b
shows the monetized health benefits quantified for each
scenario. In 2018, annual health savings increased from $67
billion with STDc to $106 billion with STD1 and $149 billion
with STD2 in 2018 US dollar. The health benefits in 2035 are
smaller than the 2018 baseline when converted to 2018 dollars,
with $42 billion for STDc, $75 billion for STD1, and $124
billion for STD2.
To frame these findings within potential implications for EJ,

the health savings within DAC, including minority and low-
income groups70 are considered. Figure 3b compares the per
capita health benefits for the statewide average (red) to those
allocated only to DAC (blue). For all scenarios, the health
benefits within DAC are higher than the state average, and this
ratio of benefits increases favorably with increasingly more
stringent standards, especially for the 2035 scenarios. Figure 3c
shows the distribution of health benefits within communities in
relation to their CalEnviroScreen score. Generally, health
benefits increase with higher (i.e., more disadvantaged)
CalEnviroScreen scores, indicating an improvement in
environmental inequality. The results for the 2035 scenarios
show more rapid growth, as the PM2.5 standards strengthen

Figure 2. Annually averaged PM2.5 concentration differences between the 2018 baseline and (a) 2018-STDc, (b) 2018-STD1, and (c) 2018-STD2
and between the 2035 baseline and (d) 2035-STDc, (e) 2035-STD1, and (f) 2035-STD2.
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compared to the 2018 scenarios, indicating more progressive/
efficiency in improving environmental inequalities.
Figure 4a−f shows the spatial distribution of per capita

health savings at the Census Tract community level. As would
be expected, for both 2018 (see Figure 4a−c) and 2035 (see
Figure 4d−f), an expansion and increased magnitude of
monetary benefits can be observed, indicating a universal
improvement in California if PM2.5 NAAQS are strengthened.
However, between the 2018 and 2035 scenarios, the
distribution patterns are different. The 2018 scenarios are
more equally weighted throughout the modeling domain, and
the 2035 distribution is more concentrated in the highly
populated SoCAB and the SJV Air Basins. A key factor in this
difference is the lack of wildfire emissions in the 2035
simulations. The 2018 data include multiple large wildfires that
impacted particulate levels in California as a whole and the
SFBA area. As the increased incidence of wildfires is expected
due to climate change and other factors,71 the results for 2035
are conservative. For SoCAB, results indicate more significant
health benefits for 2035 than 2018, especially over the
northeast Los Angeles (LA) and San Bernardino region (see
Figure S1 in the Supporting Information for geographical
locations). Considering the health benefits distribution over
the highlighted DACs, most benefits are allocated to DACs in
the SJV and SoCAB. Some of the most impacted communities
are in downwind regions west of LA, for example, Fontana.
The conclusions of the IPMRP are supported by these

results, which states that strengthening of the PM2.5 standards

would yield significant socioeconomic benefits and better
protect public health than current standards. The substantial
monetary value generated by health savings should be
considered against the potentially increased costs of deploying
emission mitigation strategies within impacted sectors. While a
direct cost/benefit assessment is not provided here, the results
support a previous work demonstrating that the public health
benefits often exceed additional costs.38,72 Notably, health
savings occur with a higher frequency in environmentally and
socioeconomically DACs. EJ concerns remain a major focus of
AQ regulators and demonstrate the current inequality
associated with AQ-related health burdens in California.
Given the disparity, stronger NAAQS provides greater benefits
in regions that currently experience the most degraded AQ and
other vulnerabilities, which represents an optimal outcome for
AQ regulators.
The impact of wildfire-contributed PM2.5 pollution in

California cannot be overstated due to the damages incurred
to public health and other aspects of the economy14 and the
expected increase in the occurrence and severity of wildfire
events in response to climate change and other factors.73−76

Wildfire smoke wave events cannot be controlled in the same
manner as anthropogenic sources, and therefore present as a
significant confounding factor in current and future NAAQS.
This is notable in the results, as the 2018 scenarios attain
benefits in regions of Northern California that are likely
influenced by assumed reductions in PM2.5 contributed by
wildfires, as the same pattern is not observed for the 2035

Figure 3. (a) Avoided mortality incident bar plots with 95% CI (mean values marked), for the attainment of proposed standards relative to 2018
and 2035 baselines [the same for plot (b,c)]; (b) bar plot with 95% CI showing mean monetized health benefits (left axis) and the line plot
showing the health benefits per capita (right axis) for both the statewide average (average) and DAC; and (c) health benefit distribution for
aggregated communities based on their CalEnviroScreen score (shading areas mark 95% CI and the dashed line marks 75%), where communities
above it are considered as DAC (in 2018 US dollar).
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scenarios, which assume no impacts from wildfires. Therefore,
establishing stronger NAAQS to help offset increased
contributions to regional air pollutant burdens from wildfire
smoke could be necessary to limit detrimental health effects in
exposed populations. This consideration should be addressed
in future work, including the quantification and spatial
resolution of wildfire contributed PM2.5 from total regional
burdens in relation to the attainment of NAAQS.
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