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The frequency and size of wildfires in the western United 
States has been increasing for several decades, driven by 
climate-change-related decreases in precipitation and related 

changes in the moisture in vegetation1–5. Meanwhile, land and fire 
management have probably exacerbated the hazard6, and popula-
tion and economic growth—especially at the wildland–urban inter-
face7—has dramatically increased the human exposure to fires. The 
combined result has been ever rising wildfire risks, culminating in 
California in a series of enormously damaging fires in 2017, 2018 
and 2020. To date, efforts to quantify the impacts of specific fires 
on humans (for example, by researchers, but also by insurance 
companies, public agencies and the media) have focused on the 
physical and direct damage to infrastructure and loss of life8. The 
potential human health effects of wildfire smoke are also increas-
ingly recognized, but only rarely estimated9,10. But disasters may 
also have large indirect impacts on economic activities that extend 
much beyond the location of physical destruction or smoke11–13. 
For example, destruction of productive capital and interruption 
of transportation systems or labour supply affect other economic 
activities up and down all connected supply chains. Such economic 
disruption by fires has never been quantified; our understanding 
of the magnitude of wildfire impacts and their distribution across 
space and industries may thus be incomplete. In turn, decision mak-
ers (including government officials, businesses and residents) may 
systematically underestimate wildfire risks and thereby misallocate 
resources intended to recover from past fires and/or build up resil-
ience to future ones.

In this article, we use a combination of approaches to evaluate 
the full economic footprint of California wildfires that occurred in 
2018. These fires were the deadliest and among the most destruc-
tive of any year in California history up to that time: 8,527 fires 
burned an area of 1.9 million acres (7,700 km2; approaching 2% of 
the state’s area)14. Table 1 lists the 17 largest fires by area burned, 

along with their location in the state and duration. Details of our 
analytical approach and data sources are provided in the Methods. 
In summary, we estimate capital losses as the costs to repair and 
rebuild damaged or destroyed assets based on data from the US 
National Interagency Fire Center’s Large Incident Year-to-Date 
Report14 and valuations compiled from insurance companies (for 
example, Munich RE15). We then estimate morbidity, mortality and 
health cost (for example, medical expenses, lost working time and 
so on) related to fire-related air pollution using the most up-to-date 
emissions inventory from the fourth-generation global fire emis-
sions database (GFED4)16, a regional chemical transport model 
(based on the state-of-the-science model GEOS-Chem), and the US 
Environmental Protection Agency’s Benefits Mapping and Analysis 
Program (BenMAP)17. Finally, we estimate indirect losses of eco-
nomic disruption to 80 industry sectors in each of California’s 58 
counties and the rest of the United States using the multiregional 
disaster footprint (MRDF) model18–20 (Methods).

Results
Figure 1 shows modelled results of monthly average particulate 
matter ≤2.5 μm (PM2.5) concentrations related to California wild-
fires between July and December of 2018 along with the corre-
sponding areas of California with unhealthy air quality. Major fires 
in July occurred in both the northern parts of the state (for example, 
the Pawnee, Klamathon, Carr, Mendocino Complex and Whaleback 
fires; Table 1 and Supplementary Fig. 1) and the Sierra Nevada (for 
example, the Lions and Ferguson fires) (Fig. 1a). Altogether, fires 
destroyed 472 structures in July and negatively affected air qual-
ity throughout much of the northern half of the state, especially 
in Shasta, Glenn and Tehama counties in the north and Mariposa, 
Tuolumne and Madera counties in the Sierra Nevada (Table 1 and 
Fig. 1a). At the worst, on 30 July, the air quality of over 39 million 
acres was categorized as unhealthy or worse—roughly 31% of the 
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state’s area; 31% of the state’s population lives in these areas. Many 
of the fires that began in July or even June of 2018 were still burn-
ing and spreading in August, when still more fires started in both 
the north (for example, the Hirz and Stone fires; Table 1) and the 
Sierra Nevada (for example, the Donnell fire), as well as in the 
southern parts of the state (for example, the Holy fire; Fig. 1b). The 
fires destroyed an additional 1,618 structures in August and further 
degraded air quality over an even larger area: as of 5 August, air qual-
ity of 36 million acres was categorized as unhealthy or worse (29% 
of the state’s area; 25% of the state’s population lives in these areas; 
Fig. 1b). All the major fires begun before September ended in early 
September due to increases of precipitation, and the Delta fire in 
Shasta County was the only new major fire that began in September 
(on the 5th). As a result, fire-related air pollution was much lower 
in September; at the worst, unhealthy air spanned 6.95 million 
acres in the northernmost part of the state on 7 September (5.6% 
of the state’s population lives in these areas; Fig. 1c). The Delta fire 
destroyed 45 structures and was not fully contained until 6 October. 
The break in major fires continued throughout October, such that 
fire-related air pollution remained low (Fig. 1d). On 8 November, 
we saw the start of the last two major fires of the year, the Camp in 
Northern California and the Woolsey in Southern California, which 
contributed to the destruction of 20,447 structures in November. 
These fires also substantially degraded air quality throughout 
the northern Central Valley, Bay Area and north coast counties;  
on 17 November, air quality was categorized as unhealthy or worse 
over 18.61 million acres (39.0% of the state’s population lives in 
these areas; Fig. 1e).

Figure 2 shows our estimates of fire-related damages from the 
2018 fires in total and broken down by capital losses, health costs 
and indirect losses of economic disruption (mean results of the sen-
sitivity analysis; see Supplementary Table 1 for county-level dam-
ages in each category). Of $27.7 billion in capital losses, $4.5 billion 
(17%) belonged to households and $23.2 billion (83%) were pro-
ductive capital, that is, commercial, industrial or public assets. The 
greatest capital losses of any individual fire were those related to the 

Camp fire in Butte County, which totalled $14.6 billion (53% of all 
capital losses; Supplementary Fig. 2). This helps to explain the dis-
proportionately large capital losses in the northern parts of the state, 
with Ventura and Los Angeles counties showing up as southern 
hotspots of capital losses (Fig. 2a). Given the larger populations of 
these southern counties, per capita capital losses were not as great, 
however (Fig. 2b). Health costs fall into three categories: mortality, 
medical expenses and work time lost. Mortality dominates the total. 
We estimate 3,652 air pollution deaths were caused by California’s 
2018 fires, which—applying the value of statistical life—represent 
a loss of $32.2 billion. Note that the deaths related to air pollution 
are considerably greater than the reported 104 lives (including 98 
civilians and 6 firefighters) that were claimed directly by the fires. 
In comparison to the deaths, the costs related to medical expenses 
and work time lost are relatively small: $210 million and $130 mil-
lion, respectively. The geographical distribution of the health costs 
reflects a combination of the areas most affected by wildfire-related 
PM2.5 (Fig. 1) and populated areas. Thus, overall health costs in the 
Bay Area and Sacramento–San Joaquin Delta and Los Angeles met-
ropolitan area are particularly large—despite the fact that some of 
the affected counties had no major fires (Fig. 2c and Table 1). By 
contrast, per capita health costs more closely reflect the highest con-
centrations of wildfire-related PM2.5 (Figs. 1 and 2d).

Our estimates of indirect losses caused by fire-related economic 
disruptions in 2018 are considerably larger than either direct capital 
losses or health costs. Total losses in the United States were $88.6 
billion—more than 0.4% of the nation’s gross domestic product 
(GDP) that year. Of this total, $42.7 billion (48.2%) of the indirect 
losses occurred in California, and $45.9 billion (51.8%) occurred 
in other parts of the United States via production and consump-
tion supply chains connected to California. Despite having no major 
fires itself, Sacramento County suffered the greatest indirect losses, 
$6.6 billion (8% of the county’s GDP that year; Supplementary Table 
1). However, as a share of GDP, Butte County (where the Camp fire 
occurred in November) suffered even greater indirect losses: $5.6 
billion, or 47.4% of its own GDP. Combining the damages in all  

Table 1 | Seventeen largest fires by area burned in California in 2018

Name Cause Start date End date County Size 
(acres)

Suppression cost 
(in million US$)

Structures 
destroyed

Pawnee Human 23 June 7 July Lake 15,185 36.5 22

Lions Lightning 23 June 6 September Madera 12,990 13.9 0

Waverly Unclear 29 June 2 July San Joaquin 11,789 2.5 3

County Human 30 June 13 July Yolo 90,288 46.9 30

Klamathon Unclear 5 July 21 July Siskiyou 38,008 33.5 82

Ferguson Unclear 14 July 23 August Mariposa 96,901 118.5 11

Carr Human 23 July 29 August Shasta 229,651 158.8 1,604

Cranston Human 25 July 8 August Riverside 13,139 22.1 12

Whaleback Unclear 27 July 6 August Lassen 18,703 8.9 0

Mendocino Complex Unclear 28 July 17 September Colusa, Glenn, Lake, 
Mendocino

459,123 201.0 280

Donnell Unclear 2 August 6 September Tuolumne 36,450 33.6 135

Holy Unclear 6 August 3 September Orange, Riverside 23,025 25.70 24

Hirz Human 9 August 13 September Shasta 46,150 55.5 0

Stone Lightning 15 August 29 August Modoc 39,387 16.9 2

Delta Human 5 September 6 October Shasta 63,311 64.4 45

Camp Unclear 8 November 25 November Butte 153,336 102.8 18,804

Woolsey Unclear 8 November 20 November Los Angeles, Ventura 96,949 56.9 1,643

Data from the US National Large Incident Year-to-Date Report 201814.
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Fig. 1 | Air pollution due to fire emissions from July to December in California. a–f, Monthly mean PM2.5 concentrations induced by fire emissions (map 
at the top of each panel) and the area in each air quality index (AQI) category in California (bar chart at the bottom of each panel; refer to Mintz51 for 
the criteria) for July (a), August (b), September (c), October (d), November (e) and December (f); data for county boundary lines from the Geography 
Program of the United States Census Bureau (www.census.gov/programs-surveys/geography.html). In the maps, pollutant concentrations from low to 
high are indicated using shades from cool colour to warm colour (blue–yellow–red). In the bar charts, the area statistics in each air quality category are 
shown in stacked bar charts (some grids on simulated boundaries, outside California, are counted). Wildfires in July, August, September and November 
release large amounts of pollutants into the air (maps; a,b,c,e): from July to September, wildfires in Northern California (for example, the Carr fire in Shasta 
County from 23 July to 29 August; the Mendocino complex fire in Colusa, Glenn, Lake, and Mendocino counties from 28 July to 17 September; Table 1 and 
Supplementary Fig. 1) and the Sierra Nevada (for example, the Ferguson fire in Mariposa County from 14 July to 23 August; the Lions fire in Madera County 
from 23 June to 6 September) caused monthly concentrations of local air pollutants to increase by more than 10 µg m–3 (up to about 60 µg m–3) (maps; a–c); 
In November, the Camp fire in Butte County (Northern California) considerably increased the concentration of pollutants in the air (e). Fire pollutants can 
spread over great distances, resulting in poor air quality in unburned areas (bars; a,b,c,e): from late July to early September and mid-November, air quality 
in many areas of California was not in the ‘good’ category (0–15.4 µg m–3). Note that the area in the bar charts includes the boundary the model area.
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categories, the geographical distribution of total losses is substan-
tial in many California counties, although often for different rea-
sons (Fig. 2g and Supplementary Fig. 2). Total losses were again 
largest in Butte County ($23.2 billion), followed by Sacramento 
and Los Angeles counties ($10.1 and $9.1 billion, respectively; 
Supplementary Table 1). Per capita losses highlight areas with rela-
tively low populations but large losses; in Butte, Shasta and Lake 
counties, damages were $101,000, $35,000 and $13,000 per capita, 
respectively (Fig. 2h and Supplementary Table 1).

The ternary plots in Fig. 3 show the magnitude of 2018 fire 
impacts on specific industry sectors in California (size of circles) 
as well as the relative shares of capital losses, health costs and indi-
rect losses (position of circles; see also Supplementary Table 2). 
The service industry suffered the greatest total losses ($44.4 billion, 
or 45.1% of the statewide total), with 44.7% of this total related to 
health costs, 33.8% related to capital losses and 21.5% associated 
with indirect losses (red circle in Fig. 3a). By contrast, 78.1% of 
damages to the manufacturing sector (second largest at $22.3 bil-
lion, 22.6% of total losses) were indirect losses, with just 15.7% in 

health costs and 6.2% in capital losses (turquoise circle in Fig. 3a). 
Combined losses in all of the other five major sectors were $31.7 
billion (Fig. 3a). Yet, breaking damages into subsectors, we see the 
composition of damages varies widely. For example, in the service 
sector, damages to the real estate industry were heavily concentrated 
in capital losses (77.2% of the subsector’s $9.3 billion in damages) as 
opposed to mostly health costs in labour-intensive subsectors such 
as education, software and restaurants (Fig. 3b) and trade (retail) 
subsectors (Fig. 3d). Damages to some manufacturing subsectors 
were also mostly health costs (for example, the aircraft, medical and 
electrical industries), but overall damages are dominated by indi-
rect losses related to the chemical industry (Fig. 3c). The chemical 
industry is the largest manufacturing sector in California and con-
tributes about 3.7% of overall statewide GDP. The figure in some 
counties, such as Solano and Contra Costa, accounts for 25–29% of 
county-level industrial outputs. During the fire events, the chemi-
cal industry suffered direct capital loss of $284.5 million and health 
costs of $375.1 million, but the changes of demand and supply pat-
terns in chemical production chains caused indirect loss within 
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the state of $13,639.3 million and out of state of $2,513.1 million. 
Supplementary Figs. 4–7 and Supplementary Table 2 show and fur-
ther explore subsector results for each of the other major sectors.

Uncertainties. Sensitivity analysis of parameters in epidemio-
logical model. We perform a Monte Carlo analysis with BenMAP 
Community Edition (BenMAP-CE) to quantify the 95% confidence 
interval (CI) around the mean incidence and valuation estimates. 
Although long-term changes in PM2.5 exposure dominate the valu-
ation impacts, we report results for both short-term and long-term 
exposure related to the 2018 wildfire episodes. Consistent with 
the current modelling methods practiced by regulatory agencies, 
including the US Environmental Protection Agency and South 
Coast Air Quality Management District, no concentration thresh-
old is assumed for the health impact assessment modelling21. 
Statewide, mean health costs of the fires are $32.15 billion, and 95% 
CIs range from $13.33 billion to $75.92 billion. The range of uncer-
tainty in our valuation is generally consistent with other BenMAP 
estimates reported in the literature and relates to statistical error 
and cross-study variability21–23.

Uncertainties in capital damage statistics. The uncertainty in capital 
damage statistics is related mostly to the degree of building losses 

and their reconstruction costs. Since the degree of damage to affected 
buildings is not given by official reports, we assume the average dam-
age proportion is 50%, but with a range uniformly distributed from 1% 
to 99%. For the reconstruction cost of buildings in different regions 
in California, we refer to values reported by Allstate, CoreLogic and 
reinsurance companies (that is, Munich RE15). These companies’ 
Insurance Journal reports provide the number and total reconstruc-
tion cost value of buildings within the perimeters of the major fires. 
We then calculate the average reconstruction cost of the buildings in 
different regions using these valuations. We find an average recon-
struction cost for residential buildings of $238,600 in the Camp fire 
area and $695,500 in the Woolsey fire area. For commercial buildings, 
the average is $2.69 million in the Camp fire area and $1.04 million 
in the Woolsey fire area. We use these two fires to bound building 
reconstruction costs in other regions, randomly selecting from the 
full range for Monte Carlo simulations to create a distribution of capi-
tal losses. In this way, we find the average total damage to residential 
buildings is $4.52 billion, with a 95% CI from $3.13 billion to $7.49 
billion, and the average total damage to commercial buildings is $23.2 
billion, with a 95% CI from $15.78 billion to $29.62 billion.

Sensitivity analysis of parameters in the economic model. There  
are two main parameters in the economic model that will bring 
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uncertainty to the results. One is the reconstruction time of the 
building, and the other is the time of traffic recovery in the fire area. 
We assume the average recovery time of a building is 90 days; that is, 
it takes 90 days from the acquisition of recovery resources to com-
plete rebuilding. This rebuilding time parameter is then varied from 
60 days to 120 days in our sensitivity analysis. Similarly, we assume 
that the average recovery time of transportation in a fire area was 
14 days after the fire was contained and vary this parameter from  
7 days and 21 days in the sensitivity analysis. In this way, we find 
that the average production loss is $88.61 billion, ranging from 
$79.40 billion to $96.05 billion.

Sensitivity analysis of total economic footprint. Using the distribution 
of losses obtained by our three types of losses uncertainty analysis, 
we perform 2,000 simulations in our Monte Carlo analysis to gener-
ate a distribution of the total economic footprint of California wild-
fires in 2018. Supplementary Fig. 8 shows the resulting distribution 
of total fire losses along with 95% CIs: $148.5 billion, ranging from 
$126.07 billion to $192.93 billion.

Discussion
Although substantial, the direct capital losses related to the 2018 
California wildfires represent only 27.0% of the statewide total 
damages we estimate in this study, and an even smaller share of the 
impacts in some counties and to specific industry sectors. Health 
costs and indirect economic losses, rarely if ever quantified before, 
represent an enormous 31.5% and 41.5% of the statewide total dam-
ages, respectively. Moreover, these indirect impacts in some case fell 
heavily on locations (for example, Sacramento County) and indus-
tries (for example, chemical manufacturing) away from major fires. 
In the same way, our results reveal that the United States beyond 
California also suffered considerable economic damages ($45.9 
billion) related to California’s wildfires. Quantifying and mapping 
these less obvious but large damages in 2018 leads to the conclusion 
that large wildfires occurring in California or other western states 
are not isolated problems. Although the horrific scenes of death 
and destruction may seem confined to specific communities, the 
related economic and health impacts affect a much broader area, 
which in 2018 included substantial losses to the national economy. 
Recognizing the full magnitude and scope of wildfires’ economic 
footprint may in turn influence decision making about land and for-
est management, fire suppression efforts and development patterns. 
For example, health costs and indirect losses of future fires might 
be reduced by focusing fire prevention efforts on areas typically 
upwind of major population centres or near important industrial or 
transportation infrastructure. Similarly, our results suggest that the 
indirect economic losses related to the recent forced electricity out-
ages24,25 might be much larger than the capital losses that may have 
been avoided (although lives may have been saved).

The magnitude and spatial distribution of wildfire impacts sup-
port greater investments in fire prevention and suppression, includ-
ing investments by jurisdictions indirectly affected by the related 
pollution and economic disruption. Our work forcefully demon-
strates that the impacts of wildfires are much more broadly distrib-
uted in space than conventional wisdom might suggest. Now and as 
the climate changes, wildfire risks transcend far beyond the wild-
land–urban interface; they are a statewide and regional challenge. 
In turn, recognizing the greater magnitude and far-reaching indi-
rect impacts of the recent fires may justify dedicating substantially 
greater resources to mitigating fire risks and coordinating planning 
and responses across the state and region.

However, our estimates of wildfire-related damages in 2018 are 
subject to some important uncertainties, and our methods may not 
capture all types of economic damages. For example, the recon-
struction cost value of buildings damaged in fire events and to be 
restored after the disaster are based on average estimates of each 

fire region rather than on specific marketing information. Similarly, 
estimates of health costs assume methods that reasonably account 
for statistical uncertainties but may understate the impact of epis-
temic uncertainties, including those associated with air quality 
modelling, epidemiological science and health economic valua-
tion26. Furthermore, only impacts to California populations are 
quantified although intrastate transport of pollutants may accrue 
health costs elsewhere. Time lags between the fires and the restora-
tion of transportation lines, as well as the time required to rebuild 
are the key uncertain parameters in estimating indirect losses. Our 
analysis also neglects international trade and difficult-to-quantify 
impacts such as effects on mental health and the prospect of cas-
cading events such as subsequent landslides. Unfortunately, indirect 
economic costs are extraordinarily difficult to validate11,18 because 
models such as ours focus on estimating fire-related supply-chain 
losses assuming that the myriad other factors that affect economic 
growth do not change, but the reality is that many such other factors 
will have changed, and the growth of the state’s GDP will be the net 
of all these changes. In an effort to quantify some of the uncertain-
ties, we conducted a sensitivity analysis for each of three models 
used in the study and integrated the results into a single uncertainty 
analysis of the overall economic footprints. Details are available in 
the Methods and Supplementary Information. Despite the uncer-
tainties, projected climate change, population growth and economic 
development will continue to increase wildfire risks in California 
and the rest of the western United States in the years and decades to 
come. Understanding the economic footprint of past fires can only 
help in strategically confronting these risks so as to cost-effectively 
minimize the impacts of future fires.

Methods
Definition of the economic footprint of wildfires. The economic footprint of a 
wildfire provides a comprehensive accounting of the wildfire-induced direct and 
indirect economic losses in our socioeconomic system. The economic footprint 
of a wildfire consists of (1) the direct capital cost (the cost to repair or reconstruct 
the assets that have been damaged or destroyed in the wildfires); (2) the health 
cost (medical costs, working time loss and rising mortality due to air pollution 
induced by wildfires); (3) the indirect cost (the potential value-added losses of the 
economy due to the supply-chain disruptions triggered by wildfires). Note that the 
indirect part of the economic footprint of wildfires was designed to estimate the 
potential supply-chain losses related to the wildfires assuming that other factors 
do not change. As such, the analytical framework is fundamentally different from 
those used in other macroeconomic analyses that aim to simulate and project real 
changes in an economy.

Supplementary Fig. 9 shows the overall analytical framework for economic 
footprint accounting. A random forest model was used to estimate the daily mean 
PM2.5 concentration at 4 km spatial resolution over California (Supplementary 
Fig. 9a). Then, we used two GEOS-Chem simulations (without and with 
fire emissions) to calculate the fraction of wildfire-induced PM2.5 emission 
(Supplementary Fig. 9b). With the estimated gridded pollutant concentration data 
and population density data as inputs, we used the environmental BenMAP-CE 
version 1.5 to assess the health-related socioeconomic costs attributable to the 
degradation of air quality from wildfire emissions (Supplementary Fig. 9c).  
We estimated the losses of capital stock, both productive capital and residential 
building losses, according to reports on fires by CAL Fire and reports on 
reconstruction cost by insurance companies (Supplementary Fig. 9d). Finally,  
we used an MRDF model to simulate the ripple effect of fire-induced production 
time loss, capital loss and traffic disruption on supply-chain networks and assess 
indirect economic losses (Supplementary Fig. 9e).

Wildfire-induced air pollution estimation. Daily mean PM2.5 concentrations at 
4 km spatial resolution over California used in this study were estimated using 
random forest models that incorporated information from multiple sources, 
including ground measurements, satellite remote sensing, chemical transport 
model simulations, meteorological fields and land use variables. This method  
was widely used in previous studies on estimating high-resolution full-coverage 
PM2.5 concentrations (for example, Xiao et al.27) and was able to capture large  
fire events28.

Ground-level PM2.5 measurements for 2018 were obtained from the US 
Environmental Protection Agency’s Air Quality System (see Data availability). 
Satellite-based aerosol optical depth (AOD) data retrieved by the multi-angle 
implementation of atmospheric correction (MAIAC) algorithm at 1 km spatial 
resolution29,30 on the basis of the Moderate Resolution Imaging Spectroradiometer 
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(MODIS) were downloaded from NASA Earthdata portal. PM2.5 simulations from 
the Modern-Era Retrospective analysis for Research and Applications, version 2 
(MERRA-2) at 0.5° × 0.625° resolution were also used in this study as additional 
information on PM2.5 distribution. Other variables compiled in this study included 
pressure, temperature, wind speed, specific humidity, precipitation, shortwave 
and longwave fluxes, and evaporation at ~13 km spatial resolution from the North 
American Land Data Assimilation Systems; elevation at 30 m spatial resolution 
from the National Elevation Dataset; forest cover, shrub cover and cultivated land 
cover at 30 m spatial resolution from the 2011 National Land Cover Database; road 
lengths of major roads, highways and interstate highways extracted from ESRI 
StreetMap USA (Environmental Systems Research Institute); and population data 
from 2017 LandScan data. All data were integrated into the 1 km MAIAC grid,  
and the PM2.5 concentrations were first estimated at 1 km and then aggregated  
into a 4 km grid.

In general, the random forest algorithm is an ensemble learning method 
based on decision trees, which has the advantage of allowing both continuous and 
categorical input variables and is quite robust to outliers. It also provides variable 
importance rankings as well as out-of-bag errors for variable selection and model 
evaluation. We built two random forest models in this study (with and without 
satellite inputs) and then merged their predictions to obtain full spatial and 
temporal coverage of PM2.5 data, since AOD has missingness in certain times and 
places. Our models produced good results, with out-of-bag R2 of 0.83 and 0.80 for 
the two models, respectively.

When using AOD to estimate PM2.5 concentrations, statistical models (for 
example, multilinear regression, geographically weighted regression, generalized 
additive model) or machine-learning models were built to explain the spatial–
temporal varied relationship between AOD and PM2.5 at locations where PM2.5 
monitors are available, as follows:

PM2:5;obs ¼ f AOD; ancillary datað Þ

where the independent variable PM2.5,obs is PM2.5 observations; AOD is the satellite 
AOD at corresponding locations; and ancillary data includes meteorological 
conditions, land use variable and other parameters that could influence the 
relationship between AOD and PM2.5. Then PM2.5 concentrations outside 
monitoring locations could be predicted by AOD and the ancillary data. Since 
AOD is randomly missing due to cloud cover and snow cover, we also built a model 
using MERRA-2 data at locations where AOD is unavailable:

PM2:5;obs ¼ f PM2:5;MERRA-2; ancillary data
� �

Results from the two models are merged to get the final results without double 
counting.

Note that this method provides total surface PM2.5 from all emission sources 
but cannot identify the part specifically contributed by wildfire emissions. We 
therefore use a second model (GEOS-Chem) to simulate the fraction of PM2.5 
induced by wildfires in total PM2.5. To calculate the wildfire-induced PM2.5 
fractions, we used two GEOS-Chem model scenarios—with and without fire 
emissions. The differences between these two scenarios divided by the total PM2.5 
were calculated as the wildfire PM2.5 fractions. The fire emissions used in this 
study were GFED4s emissions16. The GFED4 emissions used in this study are at 
spatial resolution of 0.25° × 0.25° and temporal resolution of 3-hourly. Our global 
GEOS-Chem model has a spatial resolution of 2° × 2.5°. The transport/convection 
time step in the model is 600 seconds and the chemistry/emission time step is 
1,200 seconds. Secondary organic aerosols are included in our model with the 
simple secondary-organic-aerosol scheme that provides the correct amount of 
global secondary organic aerosol without detailed chemistry.

Health impact assessment. A deep breadth of scientific literature demonstrates 
a positive association between exposure to ambient outdoor air pollution 
and increases in the incidence of morbidity and mortality within exposed 
populations31–33. Health-related socioeconomic costs attributable to the degradation 
of air quality from wildfire emissions was assessed using the environmental 
BenMAP-CE version 1.517. BenMAP-CE is an open-source software developed 
by the US Environmental Protection Agency and is widely used in emission 
regulation assessment34,35 and wildfire health impact evaluation36,37. BenMAP 
applies the relationship between the pollution and certain health effects, which 
is often referred to as the health impact function or the concentration–response 
(C–R) function (derived from epidemiology studies; Supplementary Fig. 10). 
The variables that appear in health impact functions are the following: air quality 
change (Delta), the difference between the starting air pollution level (baseline) 
and the air pollution level after some change (control); health effect estimate (β), 
an estimate (obtained from epidemiology studies) of the percentage change in the 
risk of an adverse health effect due to changes in ambient air pollution; exposed 
population, the number of people that are in the region where we are assessing 
the air pollution reduction; health baseline incidence, an estimate of the average 
number of people who die (or suffer from some adverse health effect) in a given 
population over a given period.

BenMAP also calculates the economic value of avoided health effects. After 
calculating the health changes, one can estimate the economic value by multiplying 

the reduction of the health effect by an estimate of the economic value per case, 
which is obtained from health economic studies. In Supplementary Fig. 11 is a flow 
diagram with all the data needed to obtain final monetary benefit results.

BenMAP-CE utilizes as an input the concentration differences resolved at 
the 24-hour time step for PM2.5 between the baseline (without wildfire) and the 
control case (with wildfire) determined in Methods subsection ‘Wildfire-induced 
air pollution estimation’ (with daily based concentration). Population projections 
are based on suggested BenMAP practices using Landscan data at 1 km spatial 
resolution38 for the year 2018 and downscaled to the 4 km study domain using 
geospatial modelling. Baseline incidence rates at the county level by five-year 
age groups are obtained as appropriate for the current California population 
and include estimates from public administrative records when possible39. C–R 
functions are used to quantify the increased incidence of mortality and morbidity 
endpoints resulting from increases in PM2.5 and are selected from a systematic 
review of the epidemiological literature accounting for applicability criteria, 
including (among others) study date and design and geography and population 
characteristics40,41. For example, all-cause mortality effects associated with increases 
in annual PM2.5 exposure were quantified by pooling C–R functions from Jerrett 
et al.42 and Krewski et al.43. We use baseline incidence rates for mortality provided 
by the South Coast Air Quality Management District taken from local health data 
based on public administrative data wherever possible39, and then calculate the 
additional incidence occurring from increased pollutant exposure. Socioeconomic 
costs are then estimated using willingness-to-pay and cost-of-illness valuation 
functions from a survey of health economic literature for mortality and 
morbidity44,45. The value of statistical life selected for application with avoided 
incidents of mortality was $9 million as a midpoint of a range of $4.2 million to 
$13.7 million from Robinson and Hammitt46, all expressed in US$2013 and based on 
2013 income levels, as recommended by Industrial Economics and Lisa Robinson45.

Capital damages estimation. The estimation of capital damages requires mainly 
two types of basic data: the number of each type of building damaged or destroyed 
by wildfires and the repair or reconstruction cost of these structures. The former 
is derived mainly from the National Large Incident Year-to-Date Report14 issued 
by the National Interagency Fire Center of the United States. The California Fire 
official website provides more detailed statistics or maps for some major wildfires. 
For the reconstruction cost of buildings in different parts of California, we refer to 
Allstate47, Corelogic48 and Munich RE15. Their reports in Insurance Journal provide 
the number and total reconstruction cost value of buildings within the perimeter 
of the major fires. We used this information to calculate the average reconstruction 
cost of the buildings in different regions. For the damaged structures, we assume 
that the repair cost of partially damaged structures is 50% of their reconstruction 
cost, and this ratio ranges from 1% to 99% in the uncertainty analysis.

Indirect economic impact assessment. The direct losses are used as negative 
shocks of our MRDF model to assess the indirect economic impact of wildfires 
on the economic system. The MRDF model is an extension of the adaptive 
regional input–output model proposed by Hallegate18, which has been widely 
used in disaster impact assessment11,19,20 due to its ability to consider both changes 
in production capacity due to productive capital losses and adaptive behaviour 
in disaster aftermaths simultaneously in the IO framework. We extend the 
adaptive regional input–output model to a multiregional case on the basis of the 
multiregional input–output (MRIO) analysis and the linear programming (LP) 
technique. Linking the improved model with the latest MRIO table for California, 
we assessed the output losses of industrial sectors in different regions caused by the 
supply-chain disruption triggered by the initial wildfire shocks.

To estimate the indirect costs of wildfires under the input–output framework, 
we first compiled an MRIO table for the study subjects. There are 59 regions in the 
MRIO table, including 58 counties in California and an aggregation region (the rest 
of United States). Production activities in each region are divided into 80 industrial 
sectors (Supplementary Table 3), and each sector produces one unique commodity. 
The basic data required to create the raw MRIO table came from IMPLAN, 
including the regional input–output table, the import matrix for each county and 
the rest of the United States, and the trade-flow data for each commodity between 
the regions. We use the ‘Chenery–Moses’ approach49 for consistent estimation of 
the intra- and interregional transections and the RAS method for balancing the 
raw MRIO table.

We assume that the economy before the wildfires is in a stable state and can  
be expressed by equation (1), the standard open input–output model developed  
by Leontief:

x ¼ Ax þ f ð1Þ

where x is a column vector of dimension N × M (where M is the number of 
industrial sectors and N is the number of regions) representing the total production 
of each industrial sector in each region, Ax represents the intermediate demand 
vector, where each element of the matrix A, [arsij], refers to the technical relation 
showing product i in region r needed to produce one unit of product j in region s 
and f indicates the final demand vector of products. This standard model exactly 
replicates the equilibrium without disruptions.
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When an economy is hit by a disaster, some part of its productive capacity is 
lost due to productive constraints, including productive capital loss, productive 
time loss and transportation constraints. These constraints will first lead to 
production declines of industrial sectors directly affected by the disaster, and then 
this initial production decline can trigger both forward and backward effects19,20 
through the intra- and interregional industrial linkages.

Another important aspect to model the disaster aftermath is the reconstruction 
demand from the affected economy. Producers affected by the disaster directly 
want to restore their production capacity by reconstructing their destroyed 
buildings or repairing their damaged buildings. To do that, industrial sectors need 
reconstruction resources from the construction sector and the manufacturing 
sector. Following Hallegate18,19, we assume that damages in each sector create an 
additional demand of 75% of the damage value to the construction sector and of 
25% of the damage value to the manufacturing sector. The reconstruction demand 
(RD) of industry i in region r to industry j in region s, f RDr;s;i;j;t

I
, can be calculated  

as follows:

f RDr;s;i;j;t ¼
0; kΔr;i;t≥kr;i;0

dj ´ kr;i;0 � kΔr;i;t

 
´ xs;j;tP

ss;jj
xss;jj;t

; kΔr;i;t<kr;i;0

8
<
:

where t denotes time, i,j = 1,…M (M denotes the number of sectors) and 
r,s = 1,…,N (N denotes the number of regions), kΔr;i;t

I
 denotes capital stock of 

industrial sector i in region r in time step t, dj denotes the distribution coefficients 
and xs,j,t denotes the output of industrial sector j in region s in time step t.

We assume that each industry sector will try its best to meet the demands from 
its clients under the current constraints. An LP technique is used to represent the 
production behaviour of industrial sectors with productive capacity constraints in 
each period50. The LP problem can be described by the following set of equations. 
A full list of all variables and their descriptions can be found in Supplementary 
Table 4.

max i0xt ¼
P
s;j
xs;j;t ð2Þ

subject to the following production-side constraints (1–4):
(1) the production technology constraints (the production functions):

xs;j;t ¼ min 8i; zr;s;i;j;tar;s;i;j
; 8u; vu;s;j;tbu;s;j

n o
ð3Þ

(2) the productive capital constraints:

vk;s;j;t≤
ks;j;t
ks;j;0

� �
´ vk;s;j;0 ð4Þ

(3) the working time constraints:

vl;s;j;t≤
ls;j;t
ls;j;0

� �
´ vl;s;j;0 ð5Þ

(4) the transportation constraints:

zr;s;i;j;t ≤
pr;t
pr;0

� �
´ zr;s;i;j;0 ð6Þ

and the following demand-side constraints:
(5) the intermediate demand constraints:

P
r;i zr;s;i;j;t ≤xs;j;t ð7Þ

(6) the total demand constraints:

xs;j;t≤
P

r;i zr;s;i;j;t þ
P

r f
D
r;s;j;tþ

P
r;i f

RD
r;s;i;j;t ð8Þ

where zr,s,i,j,t denotes the intermediate demand of industry i in region r to industry j 
in region s and f Dr;s;j;t

I
 denotes the final demand of households in region r to industry 

j in region s. The solution of the LP problem determined the output of each sector 
in each region, that is, xs,j,t, which will be distributed into first the intermediate 
consumption demand, which is determined in the LP solution, and then other 
demand, that is, final demand and reconstruction demand. If the output of an 
industrial sector cannot meet the demands from its clients, a proportional rationing 
scheme will be applied18,19. The products will be allocated to the clients according to 
their proportion of demand.

In our improved model, production capacity will not be restored immediately 
as the reconstruction resources are filled, but with some delay. Reconstruction of 
the production plant takes time. We record the recovered resources as construction 
in progress, which did not play any role in the production process. The average 
time to build a building in California is about 4–8 months. Considering that the 
speed of post-disaster reconstruction may be faster than usual, in this study, we 
made a less severe assumption that the construction of the buildings will take 90 
days. In other words, the corresponding production capacity will be restored after 
the reconstruction resources are received.

The dynamic of another two supply-side constraints is modelled as follows: 
for transportation, we assume that transportation in the area directly affected by 
fires will be disrupted immediately, and the lockdown will gradually be released 
within the next few days. For labour, the availability of labour is constrained by 
transportation disruption and fire-pollution-induced disease admission. The 
former is parallel with the transportation disruption, and the latter is derived  
from the simulation results of BenMAP.

The economy will recover to the pre-disaster equilibrium after all constraints 
are lifted. We define the value-added decrease of each industrial sector in a 
network caused by an exogenous negative shock as the disaster impacts of the 
shock. Note that we aim to assess the potential losses due to only the wildfires. 
Therefore, other factors (for example, technology) remain unchanged. In this way, 
we separately extract the effects of disaster shocks. The indirect economic cost, EC, 
is calculated as follows:

ECs;j ¼
X

u

vu;s;j;0 ´T �
X

u;t

vu;s;j;t

where T represents the total time step used to recover to the pre-crisis equilibrium, 
and u presents the type of primary inputs, l or k.

Data availability
Ground-level PM2.5 measurements for 2018 were obtained from US 
Environmental Protection Agency’s Air Quality System (https://www.epa.
gov/outdoor-air-quality-data/); MAIAC AOD was downloaded from NASA 
Earthdata portal (https://search.earthdata.nasa.gov/); North American Land 
Data Assimilation Systems, elevation at 30 m spatial resolution is from the 
National Elevation Dataset (NED, http://ned.usgs.gov); forest cover, shrub cover 
and cultivated land cover at 30 m spatial resolution is from the 2011 National 
Land Cover Database (NLCD, http://www.mrlc.gov); road lengths of major 
roads, highways and interstate highways was extracted from ESRI StreetMap 
USA (Environmental Systems Research Institute); the population data are from 
2017 LandScan data (https://landscan.ornl.gov/downloads/2017); wildland fire 
information is from the National Interagency Fire Center (National Large Incident 
Year-to-Date Report 2018), CAL FIRE (https://www.fire.ca.gov/); the county-level 
input–output table and trade-flow data between counties are from IMPLAN 
(https://implan.com/data/).

Code availability
The simulation code for the indirect economic costs can be accessed at https://
github.com/DaopingW/Disaster-Footprint-Model. The minimal input for the  
code is the multiregional input–output table. The sample code and test data for  
the minimal inputs are also provided.
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