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Air quality models are used to simulate and forecast pollutant concentrations, from

continental scales to regional and urban scales. These models usually assume that

particles are internally mixed, i.e. particles of the same size have the same chemical

composition, which may vary in space and time. Although this assumption may be

realistic for continental-scale simulations, where particles originating from different

sources have undergone sufficient mixing to achieve a common chemical composition

for a given model grid cell and time, it may not be valid for urban-scale simulations,

where particles from different sources interact on shorter time scales. To investigate the

role of the mixing state assumption on the formation of particles, a size-composition

resolved aerosol model (SCRAM) was developed and coupled to the Polyphemus air

quality platform. Two simulations, one with the internal mixing hypothesis and another

with the external mixing hypothesis, have been carried out for the period 15 January to

11 February 2010, when the MEGAPOLI winter field measurement campaign took place

in Paris. The simulated bulk concentrations of chemical species and the concentrations

of individual particle classes are compared with the observations of Healy et al. (Atmos.

Chem. Phys., 2013, 13, 9479–9496) for the same period. The single particle diversity

and the mixing-state index are computed based on the approach developed by Riemer

et al. (Atmos. Chem. Phys., 2013, 13, 11423–11439), and they are compared to the

measurement-based analyses of Healy et al. (Atmos. Chem. Phys., 2014, 14, 6289–

6299). The average value of the single particle diversity, which represents the average

number of species within each particle, is consistent between simulation and

measurement (2.91 and 2.79 respectively). Furthermore, the average value of the

mixing-state index is also well represented in the simulation (69% against 59% from the

measurements). The spatial distribution of the mixing-state index shows that the
aCEREA (Joint Laboratory Ecole des Ponts ParisTech – EdF R& D), Université Paris-Est, Champs-sur-Marne,
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particles are not mixed in urban areas, while they are well mixed in rural areas. This

indicates that the assumption of internal mixing traditionally used in transport chemistry

models is well suited to rural areas, but this assumption is less realistic for urban areas

close to emission sources.
1 Introduction

Atmospheric particles possess a large diversity of chemical compositions, which
are constantly evolving as particles mix with each other and interact with
surrounding gases. The diversity of particle compositions in a population of
a given size range is oen referred to as the particle mixing state.1 Although most
measurements are performed for “bulk” chemical compounds, i.e. without
considering the particle mixing state (e.g., Aerodyne high-resolution time-of-ight
aerosol mass spectrometer (HR-ToF-AMS),2 and multi-angle absorption photom-
eter (MAAP)3), other eld studies have focused on measuring individual particle
compositions using single particle mass spectrometers such as the aerosol time-
of-ight mass spectrometer (ATOFMS). Particle mixing state information can aid
identication of particle sources,4–7 as well as determine climate-relevant prop-
erties such as cloud condensation nuclei (CCN) activity, hygroscopicity, optical
absorption and scattering.8–11 Furthermore, information on the particle mixing
state can be a powerful tool to assess ageing processes and the relative impact of
local and regional sources of ambient particles in urban environments.12

Aside from in situ eld observations, the modelling of composition-resolved
particles remains challenging. In most air quality and climate models, for
computational reasons, the particle diversity is not considered, and it is assumed
that all particles within the same size bin13 or within the same mode14 have
homogeneous composition. These models are oen referred to as internal-mixing
models. An external-mixing model provides additional complexity by allowing for
multiple particle compositions within a given size range. Limited by complexity
and computational resources, most of the developed external-mixing models are
0-D box models.15–20 Few attempts have been made to simulate externally-mixed
particles in three dimensions, usually neglecting coagulation, and introducing
assumptions. In Kleeman and Cass,21 different particle distributions were asso-
ciated with different emission sources. However, particles were not allowed to
exchange freely between different populations, and only transportation and
interaction with gas phase species was simulated. In the works of Stier et al.22 and
Bauer et al.,23 the particle distribution was represented by mixed and unmixed
modes of predened compositions; in Oshima et al.,24 the compositions of
particles were discretised based on the mass fraction of black carbon in the
particles. Riemer et al.25 modeled externally-mixed particles using an accurate
stochastic approach, which might be computationally expensive when the
number of particles is high. Zhu et al.20 developed a Size-Composition Resolved
Aerosol Model (SCRAM), where both the size and mass fractions of chemical
components of particles are discretised. For a given particle size bin, particles
have distinct chemical compositions. When discretising mass fractions, chemical
components may be grouped into several aggregates to reduce the computational
cost. SCRAM takes into account the processes of coagulation, condensation/
evaporation and nucleation.
548 | Faraday Discuss., 2016, 189, 547–566 This journal is © The Royal Society of Chemistry 2016
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The SCRAMmodel has already been integrated into the Polyphemus air quality
platform26 and used to evaluate the particle properties in the Greater Paris region
from 28 June to 5 July 2009.27 This evaluation showed that SCRAM is able to give
satisfactory results for both PM2.5/PM10 mass concentrations and aerosol optical
depths, as assessed from comparisons with observations. Furthermore, themodel
has the ability to analyse the particle mixing state, as well as the impact of the
mixing-state assumption on particle formation and properties. However, as no
eld measurements of single particle composition and mixing state are available
for this period, the model performance could not be evaluated.27 In this work,
a simulation is conducted for January/February 2010 when the composition of
individual particles was measured1 during the winter campaign of MEGAPOLI
(Megacities: emissions, urban, regional and Global Atmospheric POLlution and
climate effects, and Integrated tools for assessment and mitigation). As a result,
the model performance in simulating the particle mixing state can be evaluated
for the rst time through a model–measurement inter-comparison.
2 Model description

The Polair3D air quality model28 of the Polyphemus air quality platform26 is used
to simulate air quality over the Paris area. The Carbon Bond 05 model (CB05)29 is
used for gas-phase chemistry and the VSRM model is applied for the in-cloud
processing of aerosols.30 The SCRAM model27 is used to simulate the dynamics of
the aerosol size distribution.

In SCRAM, the mass fraction of a given chemical component or aggregate of
chemical components within each particle is discretised into bins. Compared to
previous work,20,27 SCRAM now allows the user to independently discretise the
mass-fraction bins for each chemical component or aggregate of chemical
components. In other words, the discretisation and the number of mass-fraction
bins can be different for each chemical component or aggregate of chemical
components. A comprehensive particle composition list is generated by selecting
the possible combinations of the mass-fraction bins of each chemical component
or aggregate of chemical components. A combination of mass fractions is dened
as acceptable only if the sum of the lower bounds of each fraction bin within the
combination is lower than 100%.

Three aerosol dynamic processes are taken into account in SCRAM: coagula-
tion, condensation/evaporation and the homogeneous binary nucleation of
sulfate and water. In this work, the condensation/evaporation of inorganic
aerosols is determined using ISORROPIA31 with a fully dynamic approach to
compute dynamically the mass transfer rate between gas and particles for each
particle size and composition bin. For secondary organic aerosol (SOA) formation,
the H2O model32 is used, and bulk equilibrium is always assumed for organic
species due to limitations of the H2O model. Aer condensation/evaporation, the
moving-center algorithm is used for mass-number redistribution among xed
size bins and composition bins. More details about the discretisation method, the
mathematical derivation, the different condensation/evaporation approaches and
model validations can be found in Zhu et al.20

Although SCRAM has the ability to simulate externally-mixed (EM) particles, it
may also be used for internally-mixed (IM) particles, i.e. using the internal-mixing
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 549
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assumption by having only one mass-fraction bin (between 0 and 100%) for each
chemical component or aggregate of chemical components.
3 Simulation setup and measurement database

Simulations were conducted over Greater Paris between 15 January and 11
February 2010. The domain covers the whole Greater Paris region ([1.35�E, 3.55�E]
� [48.00�N, 49.50�N]) with a horizontal resolution of 0.02� � 0.02�, and 9 vertical
layers from ground level to 12 000 m.

In order to generate initial and boundary conditions for the simulation over
Greater Paris, two nested simulations over Europe and France were conducted
(see Fig. 1 for details of the domains). Because of the limitation of computational
resources, these simulations were conducted with the internal-mixing assump-
tion and the bulk-equilibrium approach for condensation/evaporation. The initial
and boundary conditions for the Europe simulation were obtained from the
Model for OZone And Related chemical Tracers (Mozart v2.0),33 and those for the
France simulation were obtained from the Europe simulation. For both the
France and Europe simulations, anthropogenic emissions of gases and particles
were taken from the EMEP inventory,34 while the biogenic emissions were
computed using the Model of Emissions of Gases and Aerosols from Nature
(MEGAN).35 Meteorology was from reanalysis of the European Centre for Medium-
Range Weather Forecasts (ECMWF) model.

For the simulations over Greater Paris, the anthropogenic emissions of gases
and particles were obtained from the Airparif (the Paris air quality agency, http://
www.airparif.asso.fr) inventory for the year 2005 over Ile de France and from the
EMEP inventory outside Ile de France. Following Couvidat et al.,36 gas-phase semi-
volatile organic compound (SVOC) emissions were estimated from primary
Fig. 1 Map of the three domains used for simulations: Europe ([�14.75�E, 34.75�E] �
[35.25�N, 69.75�N], resolution: 0.5� � 0.5�), France ([�5.0�E, 10.0�E] � [41�N, 52�N],
resolution: 0.1� � 0.1�) and Greater Paris ([1.35�E, 3.55�E] � [48.00�N, 49.50�N], resolu-
tion: 0.02� � 0.02�).
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organic aerosol (POA) emissions. Although a ratio (SVOC Emissions/POA Emis-
sions) of 5 was used in Couvidat et al.,36 this ratio was set to 2.5 here, as derived
from measurement data contained in a recent traffic emission report.37 Meteo-
rology was simulated with the Weather Research & Forecasting (WRF) version
3.6 model38 using the urban canopy model and the Corine land-use database39

with the YSU parametrization40 for the planetary boundary layer. The WSM6
scheme41 was used for the microphysics option of WRF, and the Kain–Fritsch
convective parametrization42 was used for cumulus physics.

Two simulations were conducted over Greater Paris: one with the internal-
mixing (IM) assumption and one with the external-mixing (EM) assumption. The
size distribution ranging from 0.01 to 10 mm was discretised into ve size bins
with bounds at 0.01, 0.1585, 0.4, 1.0, 2.5119 and 10 mm. As detailed in Couvidat
et al.,32 31 particulate species were included in the simulations. In order to
establish an appropriate comparison with the chemical species available from the
observations, the 31 species were divided into 5 groups in the EM simulation:
Elemental Carbon (EC), sulfate (SO4), nitrate (NO3), organic aerosol group (OA),
and OThers (OT), which includes ammonium and sea salt. For the external-
mixing (EM) simulation, the mass fraction of the rst group, EC, was discretised
into three mass-fraction bins ([0.0–0.1], [0.1–0.9], [0.9–1.0]), and the SO4, NO3 and
OA groups were discretised into two mass-fraction bins ([0.0–0.1], [0.1–1.0]). If the
mass fraction of one chemical group is located within the range [0.1–1.0], then it
is considered as one of the main chemical groups of the bin, otherwise it is
regarded as insignicant. EC was discretised with one more mass-fraction bin
than the other groups ([0.9–1.0]), to be able to distinguish freshly emitted EC
particles from aged particles. The last group OT was not discretised and its mass
fraction was obtained by mass conservation. A total of 17 possible particle
compositions were generated, as presented in Table 1. The names assigned to the
Table 1 17 Externally-mixed particle compositions

Index Composition names

Mass fraction of each group

EC SO4 NO3 OA

1 OT 0–0.1 0–0.1 0–0.1 0–0.1
2 OA 0–0.1 0–0.1 0–0.1 0.1–1
3 NO3 0–0.1 0–0.1 0.1–1 0–0.1
4 OA–NO3 0–0.1 0–0.1 0.1–1 0.1–1
5 SO4 0–0.1 0.1–1 0–0.1 0–0.1
6 OA–SO4 0–0.1 0.1–1 0–0.1 0.1–1
7 SO4–NO3 0–0.1 0.1–1 0.1–1 0–0.1
8 OA–SO4–NO3 0–0.1 0.1–1 0.1–1 0.1–1
9 EC+ 0.1–0.9 0–0.1 0–0.1 0–0.1
10 EC–OA 0.1–0.9 0–0.1 0–0.1 0.1–1
11 EC–NO3 0.1–0.9 0–0.1 0.1–1 0–0.1
12 EC–OA–NO3 0.1–0.9 0–0.1 0.1–1 0.1–1
13 EC–SO4 0.1–0.9 0.1–1 0–0.1 0–0.1
14 EC–OA–SO4 0.1–0.9 0.1–1 0–0.1 0.1–1
15 EC–SO4–NO3 0.1–0.9 0.1–1 0.1–1 0–0.1
16 EC–OA–SO4–NO3 0.1–0.9 0.1–1 0.1–1 0.1–1
17 EC 0.9–1 0–0.1 0–0.1 0–0.1

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 551
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particle compositions were chosen depending on their main chemical groups.
The water content within each particle was also computed and tracked with
SCRAM, while it was excluded when computing the mass fraction of each
chemical group.

The measurement data of O3, PM10 and PM2.5 from the BDQA database (“Base
de Données de la Qualité de l'Air”: the French Database for Air Quality that covers
France) are used to evaluate the model performance. More detailed observation
data is obtained during the winter MEGAPOLI (Megacities: Emissions, urban,
regional and Global Atmospheric POLlution and climate effects, and Integrated
tools for assessment and mitigation) campaign in 2010,12 where chemical
composition at the single particle level was measured using an Aerosol Time-of-
Flight Mass Spectrometer (ATOFMS) for particles within the size range 150–1067
(nm) at the urban background site of the Laboratoire d'Hygiène de la Ville de Paris
(LHVP), Paris (48.75�N, 2.36�E) between 15 January and 11 February. Ten carbo-
naceous classes were identied from approximately 1.50 million detected mass
spectra using a K-means algorithm.43 First, the number concentration of each
ATOFMS class was calculated for each hour of the campaign, then the corre-
sponding mass concentration of each particle class was estimated based on
particle diameter and an assumed density value of 1.5 g cm�3. The hourly-
resolved mass fraction of each chemical species was also measured for each size
bin, which helped determine the bulk mass concentration of each species during
the measured period. Finally, the ATOFMS-derived total mass concentrations for
each species were multiplied by a factor of 1.24 to account for the low bias of the
ATOFMS.12

4 Results and discussion
4.1 Bulk mass concentrations

Concentrations of PM2.5, PM10 and O3 from both the IM and EM simulations are
rst compared to the observations from the BDQA database to evaluate the model
performance. Table 2 shows the denitions of the statistical indicators used in
this study, while Table 3 compares the results from the IM and EM simulations
with the measurements over the entire simulation period. Both the EM and IM
simulations have good model performance, as the hourly O3 concentration
satises the recommended performance criteria44 (|MNGB| # 15% and MNGE #

30%), and both PM10 and PM2.5 meet the model performance criteria proposed by
Boylan and Russell45 with MFE # 75% and |MFB| # 60%. The statistics for PM2.5

are even closer to the model performance goal (MFE # 50% and |MFB| # 30%)
proposed by Boylan and Russell,45 while PM10 is rather under-estimated, which is
consistent with previous simulations over the same region.27,36,46 Possible reasons
for this under-estimation of coarse particles may be that re-suspension is not
modelled and that boundary conditions (i.e., pollution transported into Greater
Paris from other regions) may be under-estimated.

The concentrations of PM10 and PM2.5 from the IM and EM simulations are
very similar, which is consistent with the ndings of the summer simulations.27

However, the similarity between PM10 and PM2.5 from the IM and EM simulations
may be articial, as it may be caused by the bulk equilibrium approach used to
compute the condensation/evaporation of organics. Organic mass is found to be
the largest component of the total aerosol mass here. As shown in Zhu et al.27 for
552 | Faraday Discuss., 2016, 189, 547–566 This journal is © The Royal Society of Chemistry 2016
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Table 2 Definitions of the statistics used in this work. (oi)i and (ci)i are the observed and the
simulated concentrations at time and location i, respectively. n is the number of data

Statistic indicator Denition

Root mean square error (RMSE)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðci � oiÞ2
s

Correlation Xn
i¼1

ðci � cÞðoi � oÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ðci � cÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðoi � oÞ2
s

Mean normalised gross bias (MNGB) 1

n

Xn
i¼1

oi � ci

ci

Mean normalised gross error (MNGE) 1

n

Xn
i¼1

joi � ci j
ci

Normalised mean bias (NMB) Xn
i¼1

oi � ci

Xn
i¼1

ci

Normalised mean error (NME) Xn
i¼1

joi � cij
Xn
i¼1

ci

Mean fractional bias (MFB) 1

n

Xn
i¼1

ci � oi

ðci þ oiÞ=2
Mean fractional error (MFE) 1

n

Xn
i¼1

jci � oi j
ðci þ oiÞ=2
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inorganics, the mixing assumption strongly impacts the concentrations of semi-
volatile components when the condensation/evaporation is computed
dynamically.

More detailed analyses are made for PM1 by comparing individual chemical
components in the model simulations with the observation data from Healy
et al.12 Because dust and sea-salt are not taken into account in the measurements
Table 3 Statistics for the IM and EM simulation results (15 January to 11 February) and
measurements of the BDQA network during the MEGAPOLI winter campaign. (Obs. stands
for observation. Sim. stands for simulation. Corr. stands for correlation)

Species Sim.
Obs. mean
mg m�3

Sim. Mean
mg m�3

RMSE
mg m�3 Corr.% MNGB% MNGE% MFB% MFE%

O3 IM 31.59 37.07 18.72 61.23 �2.78 20.44 �8.13 23.71
EM 31.59 37.07 18.72 61.23 �2.78 20.44 �8.13 23.71

PM10 IM 30.68 19.63 22.49 38.26 �24.33 51.06 �46.64 63.34
EM 30.68 19.44 22.65 37.86 �25.10 51.41 �47.69 64.08

PM2.5 IM 24.95 21.65 19.02 39.58 19.53 66.86 �9.39 55.57
EM 24.95 21.53 19.21 38.65 19.55 67.73 �10.08 56.28

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 553
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of Healy et al.,12 they are not included in the computation of simulated PM1

concentrations for the comparison. In other words, PM1 is computed by summing
the concentrations of the rst three size bins (between 0.01 mm and 1 mm) and all
composition bins, excluding the concentrations of dust and sea salt. The
concentrations of elemental carbon (EC), sulfate (SO4), nitrate (NO3), ammonium
(NH4), organic aerosols (OA) in PM1 are available in the measurements and are
compared to the simulation results. The statistical performance of the IM and EM
simulations is presented in Table 4 with the measurements for the entire simu-
lation period. The temporal evolution of the different chemical components is
plotted in Fig. 2.

Over the entire simulation period, Table 4 and Fig. 2 show that both the IM and
EM results compare well to observations. The statistics for comparisons of PM1

and EC meet both the model performance goal and criterion proposed by Boylan
and Russell,45 while the statistics of the other components meet the model
performance criterion. EC, SO4 and NO3 are slightly under-estimated, while OA
and NH4 are slightly over-estimated. SO4 tends to be more under-estimated during
the rst two weeks because of the under-estimation of some events, as shown in
Fig. 2. On 18 January, an increase in SO4 was caused by a strong fog event. The
model is not able to reproduce this peak, as fog events may not be properly
modelled in our simulations, where cloud chemistry occurs depending on the
liquid water content of the grid cell. This also explains the under-estimation of the
peak concentrations of NO3 and NH4 during the same period. The under-estima-
tion of sulfate may also be linked to the formation of organo-sulfate, as Healy
et al.12 observed internally-mixed organics and sulfate during that fog event.
Another peak of SO4 occurs between 25 and 28 January, where highly polluted
continental air masses, which most likely originated from north-western and
eastern Europe, are transported over Greater Paris.12 The under-estimation of this
peak may be due to uncertainties in the larger-scale simulations (France and
Europe), leading to an under-estimation of the amount of sulfate transported into
Table 4 Statistics for the IM and EM simulation results (15 January to 11 February) and
measurements obtained12 at the LHVP site (48.75�N, 2.36�E) during the MEGAPOLI winter
campaign (Obs. stands for observation. Sim. stands for simulation. Corr. stands for
correlation)

Species Sim.
Obs. mean
mg m�3

Sim. Mean
mg m�3

RMSE
mg m�3 Corr.% NMB% NME% MFB% MFE%

PM1 IM 14.21 12.16 9.53 59.47 �14.42 43.45 �8.83 45.84
EM 14.21 11.99 9.62 59.06 �15.60 43.82 �10.62 46.52

EC IM 2.08 1.46 1.42 46.82 �29.59 46.56 �26.33 49.35
EM 2.08 1.47 1.41 46.90 �29.45 46.54 �26.16 49.30

SO4 IM 1.62 0.84 1.82 54.52 �48.48 65.34 �31.36 70.14
EM 1.62 0.83 1.83 53.55 �49.04 65.91 �33.02 71.30

NO3 IM 3.59 2.20 2.85 64.79 �38.73 49.15 �39.47 61.79
EM 3.59 2.23 2.77 67.57 �37.90 49.06 �40.67 64.49

NH4 IM 1.15 1.54 1.10 61.47 33.42 70.29 38.98 69.07
EM 1.15 1.34 0.95 61.88 15.74 59.62 32.64 65.12

OA IM 4.65 6.20 6.41 38.72 33.19 77.86 10.28 60.59
EM 4.65 6.21 6.42 38.79 33.44 77.99 10.42 60.64

554 | Faraday Discuss., 2016, 189, 547–566 This journal is © The Royal Society of Chemistry 2016
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Fig. 2 Comparisons of the IM (blue line) and the EM (green line) simulation results with
ATOFMS-derived mass concentrations for PM1, EC, OA and inorganic ions (Obs. stands for
observation – red line), when only the green line is visible the difference between the runs
(IM vs. EM) is less than the thickness of the line.
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Greater Paris through boundary conditions. Such under-estimation of sulfate has
been observed in previous simulations over Europe during the winter period of
2001,28 and likely originates from uncertainties in sulfur aqueous chemistry. As
emphasized by Bessagnet et al.,47 sulphur aqueous chemistry, which is predomi-
nant in winter, is very difficult to simulate, because it is very sensitive to temper-
ature and pH. Note that during the same event, EC is relatively well modelled,
while OA is over-estimated. There is no peak of SO4 during the period 28 January–7
February, which is dominated by local emissions and is well modelled.

As for PM10 and PM2.5, the differences in PM1 concentrations between the IM
and EM simulations are not signicant, although noticeable differences occur in
the NO3 and NH4 peaks, as shown in the time evolution curves of Fig. 2. As ex-
pected, both the IM and EM simulations lead to similar concentrations of non-
volatile components (EC, SO4) and also of OA (because of the bulk-equilibrium
assumption made when computing condensation/evaporation of organics).
Because EC, SO4 and OA represent more than 71% of the PM1 concentration, the
variations of the PM1 concentration with the mixing-state hypothesis are limited.
For volatile inorganics (NO3 and NH4), the EM assumption results in higher NO3

concentration and lower NH4, as noted in the summer simulations.27 The
modelled mass concentrations for NH4 are lower in the EM scenario, between 30
January and 3 February (see Fig. 2), which is more consistent with observations.

Fig. 3 represents the size distribution of mass concentration and mass fraction
for each chemical species. Compared toHealy et al.,12 a similar distribution is found
for EC with higher concentrations at low diameters (<200 nm), and for secondary
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 555
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Fig. 3 Mass-size distribution (up, stacked) and size-resolved average mass fractions
(down, stacked) for each chemical species from the external mixing simulation.
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inorganic components such as NO3, SO4 and NH4, larger mass fractions are found
at higher diameters (>400 nm). However, in contrast to the measurements, most of
the OA mass is found in the smallest size bins, probably because of the redistri-
bution algorithm used in the condensation/evaporation of organics, which neglects
the Kelvin effect. The condensation/evaporation of organics is performed using
a bulk-equilibrium approach, which determines, for each organic chemical
component, the gas-phase concentration and the particle-phase concentration
summed over all size and composition bins. The condensed OA concentration is
redistributed onto particle bins depending on the number concentrations of the
bins and their mean diameters. In order to improve the size distribution of OA, the
redistribution of the OA mass should be improved by taking the Kelvin effect into
account in the redistribution algorithm (see ESI† for more detailed discussions), or
by computing dynamically the condensation/evaporation of OA.
4.2 Concentrations of particle composition classes

In the EM simulation, 17 particle classes are discretised based on the combina-
tions of themass-fraction bins of the different chemical components (or groups of
556 | Faraday Discuss., 2016, 189, 547–566 This journal is © The Royal Society of Chemistry 2016
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chemical components), as dened in Table 1. The chemical group OT contains
NH4, dust and sea salt. However, as dust and sea salt are not included in the
measurements of Healy et al.,12 they are not considered when computing particle
total mass, and the composition of each particle class is therefore recomputed
aer the simulation. In the updated particle classes, the only component
considered in the group OT is NH4. Table S1† shows the average mass fraction of
each chemical component at the LHVP site for PM1 particles, as well as the mass
fraction of each particle class within the PM1 concentration. It is clear that most of
the particle mass is concentrated in a few particle classes. OA dominated particles
represent more than half of the total particle mass (60.1%), while the rest of the
particle mass is represented by the classes OA–NO3 (19.8%), EC–OA (13.1%), EC
(2.9%), OA–SO4 (1.3%) and EC–OA–NO3 (1.0%). The particle composition classes
from the simulation and measurements are classied so that they can be easily
compared. The details of the classication are presented in the ESI,† together
with the mass fraction of the chemical components of each particle class (Tables
S2 and S3†).

Themixing state of EC is well reproduced in the simulation (Table 5). As shown
in Tables S2 and S3,† the simulation results estimate 18.0% of EC-rich particles
and 82.0% of EC-poor particles, in excellent agreement with the ratio from the
measurements: 16.8% EC-rich particles and 83.2% EC-poor particles. Further-
more, 10.3% of EC particles are found to be mixed with OA (EC–OA class) in the
measurements against 13.1% in the simulation. The percentage of EC–OA–NO3

particles is under-estimated in the simulation (1.1%) compared to the measure-
ments (3.8%), as well as the percentage of EC–OA–SO4 particles (0.2% in the
simulation compared to 2.7% in the measurements). In the measurements, EC–
OA–SO4 particles have the highest concentrations during the fog event, indicating
that the under-estimation of EC–OA–SO4 particles in the simulation is probably
linked to the fog event when sulfate concentrations are strongly under-estimated
in the simulation.

As for the total EC, the mixing state of EC-rich particles is relatively well
simulated. In the simulation (see Table S1†), more than 84% of EC-rich particles
are mixed (with a mass fraction of EC lower than 90%). In the measurements, all
EC-rich particles are found mixed with other species. This is slightly higher than
determined in the simulation, partly because in the measurements the classi-
cation was originally based on sources rather than mass fractions of the different
chemical components. The average mass fraction of EC is around 0.45 for all EC-
rich particles in the simulation, which is close to the value from the
Table 5 Mass fractions of each chemical group for EC-rich and EC-poor particles from
both observation (Obs.) and simulation (Sim.)

Cases Particle class Mass ratio%

Mass fraction of each group

EC SO4 NO3 OA NH4

Obs. EC-rich 16.8 0.48 0.10 0.08 0.31 0.03
EC-poor 83.2 0.07 0.14 0.32 0.36 0.11

Sim. EC-rich 18.04 0.45 0.02 0.03 0.48 0.02
EC-poor 81.96 0.01 0.03 0.08 0.83 0.05

This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 557
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measurements (0.48). This indicates that the average degree of mixing of EC-rich
particles is similar between simulation and measurements. However, the mixing
state of EC-poor particles is not as well simulated as the mixing state of EC-rich
particles. Most of the EC-poor particles are nearly unmixed (73%) in the simu-
lation, while all of the particles are found to be well mixed (with OA mass fraction
between 0.27 and 0.52) from the measurements. Most of the mass of EC-poor
particles is represented by OA, as indicated by the high value (0.83) of the OAmass
fraction for the EC-poor particles from the simulation. These EC-poor particles
tend to have low diameters (92% below 0.4 mm). The over-estimation of the
percentage of OA in these EC-poor particles is a consequence of the redistribution
algorithm used in the condensation/evaporation of organics, as discussed in the
previous section.

Table 6 presents the statistics for EC-rich and EC-poor particles where a rela-
tively good correlation can be found for both EC-rich and EC-poor particles
(43.1% and 60.5% respectively). The statistics of EC-poor particles even satisfy the
model performance goal of Boylan and Russell45 for PM simulation. The statistics
of EC-rich particles are not as good as those of EC-poor particles, because the
particle mass is under-estimated due to the underestimation of EC, NO3 and SO4

(EC-rich particles not only contain ECmass, but also the mass of the other species
mixed with EC). Nevertheless, these results show that the SCRAM model can
simulate the concentrations of EC-rich and EC-poor particles reasonably well.
4.3 Mixing state analysis

Healy et al.1 compute a quantitative mixing-state index (c) of measured particles
based on the information-theoretic entropy approach proposed by Riemer and
West.48 The same method is used in this study to derive the mixing-state index of
simulated particles. A detailed description of this method can be found in Riemer
andWest.48 For a population of N particle compositions (N¼ 17 in this study) and
A distinct chemical components (or species, A ¼ 5 in this study), the mass of
species a in particle i is denoted as mi

a for i ¼ 1, ., N and a ¼ 1, ., A; the total
mass of particle i is mi; the total mass of species a in the total particle population is
ma, and the total mass of the entire population is m. These masses are computed as
follows:

mi ¼
XA
a¼1

mi
a ma ¼

XN
i¼1

mi
a m ¼

XN
i¼1

mi
a ¼

XA
a¼1

ma (1)
Table 6 Statistics for EC-rich and EC-poor particles obtained in simulations (15–28
January) and measurements obtained12 at the LHVP site (48.75�N, 2.36�E) (Obs. stands for
observation. Sim. stands for simulation. Corr. stands for correlation)

Particle class
Obs. mean
mg m�3

Sim. mean
mg m�3

RMSE
mg m�3 Corr.% NMB% NME% MFB% MFE%

EC rich 4.77 2.14 3.71 43.11 �55.13 63.11 �83.68 89.96
EC poor 11.82 9.85 8.46 60.50 �16.68 45.56 �7.61 48.98
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The mass fraction of species a in particle i (pi
a), the mass fraction of particle i

in the population (pi), and themass fraction of species a in the population (pa) can
be calculated as follows:

pi
a ¼ mi

a

mi

pi ¼ mi

m
pa ¼ ma

m
(2)

This information can be computed either for particles within each size bin or
for particles merged from several size bins. In this study, for comparison with
measurements of PM1, the analysis is performed for particles in the rst three size
bins (10–1000 nm).

The information-theoretic Shannon entropy is a measure of the uncertainty
associated with a random variable. According to Riemer and West,48 the Shannon
entropy associated with each single particle (Hi) can be computed based on the
mass fraction of each species within that particle:

Hi ¼
XA
a¼1

�pi
a ln pi

a (3)

While the average per-particle Shannon entropy (Ha) is given by:

Ha ¼
XN
i¼1

�piHi (4)

Finally, the Shannon entropy of the entire bulk population (Hg) can be
expressed as:

Hg ¼
XA
a¼1

�pa ln pa (5)

Based on these Shannon entropies, the corresponding diversity values can be
derived:

Di ¼ eHi Da ¼ eHa Dg ¼ eHg (6)

where Di is the particle diversity, or the effective number of species in particle i, Da

is the average single particle diversity, and Dg is the bulk population diversity.
Finally, the mixing-state index c can be derived from the following equation:

c ¼ Da � 1

Dg � 1
� 100% (7)

To summarize, Di represents the number of chemical components in a particle,
Da represents the average value of Di over the entire particle population, and Dg

shows the bulk population diversity which is consistent under both IM and EM
assumptions. Eventually, c represents the degree of similarity between an arbitrary
mixing case and a pure internal mixture. As a result, c ¼ 0% for a pure external
mixture, becauseDi¼ Da¼ 1, while c¼ 100% for a pure internalmixture asDa¼ Dg.
This journal is © The Royal Society of Chemistry 2016 Faraday Discuss., 2016, 189, 547–566 | 559
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The single particle diversity (Di) is computed from the simulation results and
compared to the measurements at the LHVP site. Most of the simulated particles
(64.5%) are within the Di range 1.8 to 3.0, which is very close to the value of 71%
obtained by Healy et al.1 for the same Di range. As most particles are concentrated
in the smallest size bins, the Di values are normalised by the number of particles in
each size bin in order to get a better representation of the variation of Di with
particle size. Fig. 4 shows the dependence of the time-averaged number concen-
tration on diversity and particle diameter, as well as the dependence of time-
averaged particle composition on particle diameter. As noted by Healy et al.,1

smaller particles have higher mass fractions of EC and OA, while larger particles
have higher inorganic mass fractions. Although the particle number concentra-
tions tend to be under-estimated in the simulation, high number concentrations
are observed at low diameters (below 200 nm) for low diversities (between 1.8 and
2.3 in the measurements and between 1.8 and 3 in the simulation) and at high
diameters for high diversity (between 3.6 and 4.2 in the measurements and
between 3.4 and 4.2 in the simulation). In agreement with the measurements, at
low diameters, most of the particles are composed of 2 or 3 species, mainly OA and
EC. At high diameters, particles are composed of inorganics (80% in the simula-
tion and 60% in the measurements). As the particle diameter grows, the mass
fraction of inorganics also grows in the measurements, indicating that the
condensation/evaporation of inorganic species is correctly modelled. However, the
OA mass is under-estimated at high diameters and over-estimated at low diame-
ters, indicating as noted before that the redistribution of OA aer condensation/
evaporation needs to be improved or to be computed dynamically.

As in the measurements, the mass fraction of EC decreases from 26% for the
bin of diameters between 158.6 nm and 400 nm to a value lower than 10% at
higher diameters. The variation of EC with particle diameter is largely linked to
Fig. 4 Dependence of the time-averaged number concentration on single particle diversity
(diversity normalised by the number of particles in each bin) and particle diameter (upper panel),
and dependence of time-averaged particle composition on particle diameter (lower panel).
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the size distribution used in the emissions: 54% was emitted in the bin [10–158.5
nm], 42% in the bin [158.5–400 nm] and 3% in the bin [400–1000 nm]. Although
the mass fraction of EC increases to about 52% in the measurements, it remains
below 30% in the simulation, because of the over-estimation of OA at low
diameters, as well as the assumed size-distribution of emissions.

The average single particle diversity (Da) and the species diversity of the bulk
population (Dg) are also derived from the simulation results. Unlike Di, which
represents the characteristics of a single particle, Da and Dg describe the overall
attributes of the entire particle population. The mixing-state index c can poten-
tially range from 0% (fully externally mixed) to 100% (fully internally mixed). The
averaged value of Da from the simulation (2.91) is close to that obtained from the
measurements (2.79), while that averaged value of Dg tends to be under-estimated
(3.76 from the simulation and 4.04 from the measurements), because of the bulk
over-estimation of OA and the bulk under-estimation of SO4. As a result, the
mixing-state index c is slightly over-estimated (69% in the simulation and 59% in
the measurements), although the average single particle diversity is well repre-
sented. These values of the mixing-state index indicate that the particle pop-
ulation at LHVP is not internally mixed.

The relationship between Da, Dg and c at the LHVP site is displayed in Fig. 5.
The values of the mixing-state index range from 23% to 90%, with a mean value of
69%. This result is generally consistent with the measurements of Healy et al.,1

where the mixing-state index is found to vary between 37% and 72%, with a mean
value of 59%. Another phenomenon observed from the measurements, and also
apparent in Fig. 5 is that the average single particle diversity (Da) is never higher
than 4 (3.5 in the measurements), even when the bulk population diversity (Da)
approaches the maximum value of 5. This indicates that a variety of different
chemical mixing states exist for particles of the same size at all times.
Fig. 5 Scatter plot of the hourly mixing-state index (c) as a function of average particle
diversity (Da) and average bulk population diversity (Dg).
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The diurnal variations of Da, Dg and c are computed from both simulation and
observation results, and the dependence of their mean value upon time of day is
shown in Fig. 6, as well as the corresponding variation of themass fraction of each
chemical component. The averaged value of Da from the simulation (2.91) is very
close to the one from the measurement (2.79). However, Dg is relatively under-
estimated from the simulation due to the overestimation of OA and underesti-
mation of SO4. As a result, the mixing-state index c is overestimated. A decrease of
both Da and c can be observed between 5:00 and 8:00 in the simulation, due to the
increase of traffic emissions, which introduce a large amount of particles with
high EC mass fractions and low Di values. However, Dg does not increase during
this period, as suggested by the measurements because of the increase of the
mass fraction of EC and OA. In both the simulation and the measurements, the
value of c increased between 8:00–14:00 due to the combined effect of increasing
Da and decreasing Dg. The increase of Da during this period is due to the decrease
of traffic emissions and ageing of existing particles, while the decrease of Dg is
largely caused by the increase of the OA fraction and the decrease of the EC and
inorganic fractions. In the simulation, c drops between 14:00 and 20:00 due to the
increase of Dg as a result of slowly increasing EC mass fraction (evening traffic).
However, this decrease is limited to 14:00–16:00 in the measurements. An
increase of Da can be observed between 20:00 and 22:00 in both the simulation
and the measurements, as a result of enhanced ammonium nitrate during night
Fig. 6 Diurnal variations of the mixing-state index (c) and bulk population mass fraction.

562 | Faraday Discuss., 2016, 189, 547–566 This journal is © The Royal Society of Chemistry 2016

https://doi.org/10.1039/c5fd00175g


Paper Faraday Discussions
Pu

bl
is

he
d 

on
 0

7 
D

ec
em

be
r 

20
15

. D
ow

nl
oa

de
d 

by
 U

ni
ve

rs
ity

 o
f 

C
al

if
or

ni
a 

- 
Ir

vi
ne

 o
n 

12
/9

/2
02

2 
8:

05
:5

3 
PM

. 
View Article Online
time, which is reected by the increase of inorganic mass fraction during that
period, as well as an increase of Dg.

So far, the discussion was based on the measurements and simulation results
at the LHVP site. Because our modelling study provides comprehensive data for
the study of the spatial distribution of particle properties, Fig. 7 presents the
spatial distribution of Da, Dg and c over the entire simulated domain, averaged
over the simulation period. The values of Da are lower close to the centre of Paris
and in areas with signicant traffic but higher in rural areas. Diversity is lower
where emissions are high, because freshly emitted particles mostly consist of one
chemical component with a single particle diversity close to 1. The spatial
distribution of Dg is relatively uniform as it represents the number of bulk
chemical components. However, there are regions where Dg can suddenly
increase or decrease, and these variations may not be similar to those of Da. For
example, in the region within the black rectangle in Fig. 7 (strong dust emissions
from sand and stone mining industries along the Seine river), some parts have
low Dg and low Da. This type of region (low Da and low Dg) may imply a relatively
homogeneous emission source, where only one type of particle is emitted. Other
regions, such as the south west of Paris and Roissy airport (denoted by the black
circle in Fig. 7) have low Da values and high Dg values. In such regions, there may
be heterogeneous emission sources, where particles with distinct compositions
may be emitted from the same place or transported to that place. Considering the
spatial distribution of the mixing-state index c, regions with a larger difference
between Da and Dg usually have lower c, which means they are less internally
mixed. Usually, the regions of low c correspond to regions of low Da (high traffic
emissions). Note that for regions of low Da but low Dg, such as within the black
rectangle in Fig. 7, the mixing-state index can be high, although the region may
Fig. 7 Spatial distribution of time-averaged average single particle diversity (Da), average
bulk population diversity (Dg), difference between Da and Dg, and mixing-state index (c)
over Greater Paris.
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correspond to a location characterised by strong local emissions. Thus, c also
reects the homogeneity of the particle population, and a group of particles with
a heterogeneous composition has a low mixing-state index and is considered as
externally mixed. On the other hand, a group of particles with a homogeneous
composition has a high mixing-state index and is considered as internally mixed,
even if the dominant particles consist of only one species (from one source).
5 Conclusions

Particle diversity and mixing state was studied using the newly developed size-
composition resolved aerosol model (SCRAM) coupled to the Polyphemus air-
quality platform. Two simulations were conducted over Greater Paris with
different mixing-state assumptions (internal mixing IM or external mixing EM).

Both simulations reproduce well the concentration of O3, PM10 and PM2.5, as
assessed from comparisons to observations from the BDQA network. The simu-
lation results of both bulk concentrations of chemical species and the concen-
trations of individual particle classes are compared with the observations of Healy
et al.12 Good correlations are found between simulation results and measure-
ments for both PM1 and bulk species concentrations, and the statistical indica-
tors for most species satisfy the model performance criteria proposed by Boylan
and Russell,45 although the concentration of SO4 is under-estimated during
periods where signicant chemical processing occurs, e.g. during a strong fog
event and periods dominated by continental (aged) air masses.

For the concentrations of individual particles obtained from the EM simulation,
a very good agreement is found for the mass fractions of EC-rich and EC-poor
particles between simulation results and observations. The single particle diversity
and mixing-state index are computed from the results of the EM simulation based
on a new quantication approach developed by Riemer and West,48 and are
compared with the observation based analyses of Healy et al.1 at the urban site
LHVP. The average value of the single particle diversity is consistent between the
simulation and the measurements (2.91 and 2.79, respectively), while the averaged
bulk population diversity is slightly under-estimated (3.76 from the simulation and
4.04 from the observation), probably because of the under-estimation of sulfate or
nitrate in the model. The mixing-state index, which depends on both the single
particle diversity and the bulk population diversity, is well represented by the
simulation, while a mean value of 69% from the simulation and 59% from the
measurements indicates that the particles are not internallymixed. Finally, the time-
averaged spatial distribution of the mixing-state index shows that particles are more
externally mixed in urban regions in and around Paris, while they are more inter-
nally mixed in rural regions. This indicates that traditional aerosol models, which
assume that particles are internally mixed, may be suitable for simulating rural
regions, while in urbanised areas, the internal-mixing assumption does not hold.
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L. Wu, Y. Roustan, K. Sartelet, M. Tombette, et al., Atmos. Chem. Phys., 2007, 7,
5479–5487.

27 S. Zhu, N. K. Sartelet, Y. Zhang and A. Nenes, J. Geophys. Res., 2016, accepted.
28 K. Sartelet, E. Debry, K. Fahey, Y. Roustan, M. Tombette and B. Sportisse,

Atmos. Environ., 2007, 41, 6116–6131.
29 G. Sarwar, D. Luecken, G. Yarwood, G. Z. Whitten and W. P. Carter, Journal of

Applied Meteorology and Climatology, 2008, 47, 3–14.
30 K. M. Fahey and S. N. Pandis, Atmos. Environ., 2001, 35, 4471–4478.
31 A. Nenes, S. N. Pandis and C. Pilinis, Aquat. Geochem., 1998, 4, 123–152.
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